SCALING LIMIT FOR A LONG-RANGE DIVISIBLE SANDPILE

被引:4
|
作者
Frometa, Susana [1 ,2 ]
Jara, Milton [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Fed Rio Grande do Sul, Rua Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
关键词
divisible sandpile; Green's functions; alpha-stable laws; fractional Laplacian; obstacle problem; OBSTACLE PROBLEM; AGGREGATION;
D O I
10.1137/16M1068062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scaling limit of a divisible sandpile model associated with a truncated alpha-stable random walk. We prove that the limiting distribution is related to an obstacle problem for a truncated fractional Laplacian. We also provide, as a fundamental tool, precise asymptotic expansions for the corresponding rescaled discrete Green's functions. In particular, the convergence rate of these Green's functions to its continuous counterpart is derived.
引用
收藏
页码:2317 / 2361
页数:45
相关论文
共 50 条
  • [21] ANISOTROPIC HEISENBERG MODEL IN LONG-RANGE INTERACTION LIMIT
    PEARCE, PA
    THOMPSON, CJ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 41 (02) : 191 - 201
  • [22] THE THERMODYNAMIC LIMIT FOR LONG-RANGE RANDOM-SYSTEMS
    VANENTER, ACD
    VANHEMMEN, JL
    JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (01) : 141 - 152
  • [23] Long-range dependent limit of processes with short memory
    Iglói, E
    Terdik, G
    LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL II, 2002, : 189 - 208
  • [24] Continuous limit of discrete systems with long-range interaction
    Tarasov, Vasily E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (48): : 14895 - 14910
  • [25] Precursory phenomena associated with large avalanches in the long-range connective sandpile (LRCS) model
    Lee, Ya-Ting
    Chen, Chien-Chih
    Chang, Young-Fo
    Chiao, Ling-Yun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (21) : 5263 - 5270
  • [26] Limit theorems in the context of multivariate long-range dependence
    Dueker, Marie-Christine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (09) : 5394 - 5425
  • [27] Constructing fractional Gaussian fields from long-range divisible sandpiles on the torus
    Chiarini, Leandro
    Jara, Milton
    Ruszel, Wioletta M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 140 : 147 - 182
  • [28] The Divisible Sandpile at Critical Density
    Levine, Lionel
    Murugan, Mathav
    Peres, Yuval
    Ugurcan, Baris Evren
    ANNALES HENRI POINCARE, 2016, 17 (07): : 1677 - 1711
  • [29] The Divisible Sandpile at Critical Density
    Lionel Levine
    Mathav Murugan
    Yuval Peres
    Baris Evren Ugurcan
    Annales Henri Poincaré, 2016, 17 : 1677 - 1711
  • [30] Odometers of Divisible Sandpile Models: Scaling Limits, iDLA and Obstacle Problems. A Survey
    Ruszel, Wioletta M.
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (01) : 125 - 165