SCALING LIMIT FOR A LONG-RANGE DIVISIBLE SANDPILE

被引:4
|
作者
Frometa, Susana [1 ,2 ]
Jara, Milton [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Fed Rio Grande do Sul, Rua Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
关键词
divisible sandpile; Green's functions; alpha-stable laws; fractional Laplacian; obstacle problem; OBSTACLE PROBLEM; AGGREGATION;
D O I
10.1137/16M1068062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scaling limit of a divisible sandpile model associated with a truncated alpha-stable random walk. We prove that the limiting distribution is related to an obstacle problem for a truncated fractional Laplacian. We also provide, as a fundamental tool, precise asymptotic expansions for the corresponding rescaled discrete Green's functions. In particular, the convergence rate of these Green's functions to its continuous counterpart is derived.
引用
收藏
页码:2317 / 2361
页数:45
相关论文
共 50 条
  • [1] The Scaling Limit of a Particle System with Long-Range Interaction
    Bovier, A.
    Geldhauser, C.
    MARKOV PROCESSES AND RELATED FIELDS, 2017, 23 (04) : 515 - 552
  • [2] Intermittent criticality in the long-range connective sandpile (LRCS) model
    Chen, Chien-chih
    Lee, Ya-Ting
    Chiao, Ling-Yun
    PHYSICS LETTERS A, 2008, 372 (24) : 4340 - 4343
  • [3] Long-range connective sandpile models and its implication to seismicity evolution
    Chen, Chien-chih
    Chiao, Ling-yun
    Lee, Ya-Ting
    Cheng, Hui-wen
    Wu, Yih-Min
    TECTONOPHYSICS, 2008, 454 (1-4) : 104 - 107
  • [4] Scaling limit of the odometer in divisible sandpiles
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    Ruszel, Wioletta M.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 829 - 868
  • [5] Scaling limit of the odometer in divisible sandpiles
    Alessandra Cipriani
    Rajat Subhra Hazra
    Wioletta M. Ruszel
    Probability Theory and Related Fields, 2018, 172 : 829 - 868
  • [6] Heisenberg scaling with classical long-range correlations
    Fernandez-Lorenzo, Samuel
    Dunningham, Jacob A.
    Porras, Diego
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [7] INTERDIMENSIONAL SCALING LAWS WITH LONG-RANGE INTERACTIONS
    IMRY, Y
    DEUTSCHE.G
    SOLID STATE COMMUNICATIONS, 1973, 12 (09) : 835 - 838
  • [8] Nonextensive scaling in a long-range Hamiltonian system
    Anteneodo, C
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 112 - 118
  • [9] Negative correlation between power-law scaling and Hurst exponents in long-range connective sandpile models and real seismicity
    Lee, Ya-Ting
    Chen, Chien-chih
    Lin, Chai-Yu
    Chi, Sung-Ching
    CHAOS SOLITONS & FRACTALS, 2012, 45 (02) : 125 - 130
  • [10] On the scaling of the chemical distance in long-range percolation models
    Biskup, M
    ANNALS OF PROBABILITY, 2004, 32 (04): : 2938 - 2977