Cloud-to-Ground lightning nowcasting using Machine Learning

被引:10
|
作者
La Fata, Alice [1 ]
Amato, Federico [2 ]
Bernardi, Marina [3 ]
D'Andrea, Mirko [4 ]
Procopio, Renato [1 ]
Fiori, Elisabetta [4 ]
机构
[1] Univ Genoa, DITEN, Genoa, Italy
[2] Univ Lausanne, IDYST, Lausanne, Switzerland
[3] CESI Spa, Milan, Italy
[4] CIMA Fdn, Savona, Italy
关键词
Lightning; Machine Learning; Nowcasting; Random Forest; Disaster Risk Management; MESOSCALE CONVECTIVE SYSTEM; FORECASTS; RAINFALL; STORM;
D O I
10.1109/ICLPANDSIPDA54065.2021.9627428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses the use of Random Forest (RF), a popular Machine Learning (ML) algorithm, to perform spatially explicit nowcasting of cloud-to-ground lightning occurrence. An application to the Italian territory and the surrounding seas is then presented. Specifically, a dataset including eighteen geo-environmental features has been used to forecast 1-hour ahead lightning occurrence over a three-months period (August- October 2018). The features' importance resulting from the best RF model showed how data-driven models are able to identify relationships between variables, in agreement with previous physically-based knowledge of the phenomenon. The encouraging results obtained in terms of forecasting accuracy suggest how, after proper improvements, ML-based algorithms could find their place in wider early-warning systems to support disaster risk management procedures.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] CHARACTERIZATION OF POSITIVE CLOUD-TO-GROUND LIGHTNING DISCHARGES
    Nag, Amitabh
    Rakov, Vladimir A.
    Tsalikis, Dimitris
    Cramer, John A.
    2010 30TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP), 2010,
  • [32] Bipolar cloud-to-ground lightning flash observations
    Saba, Marcelo M. F.
    Schumann, Carina
    Warner, Tom A.
    Helsdon, John H., Jr.
    Schulz, Wolfgang
    Orville, Richard E.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (19) : 11098 - 11106
  • [33] A Baseline for the Predictability of US Cloud-to-Ground Lightning
    Tippett, Michael K.
    Koshak, William J.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (19) : 10719 - 10728
  • [34] Analysis of Cloud-to-Ground Lightning Density in Brazil
    Marotti, Ana
    Pinto Junior, Osmar
    2017 INTERNATIONAL SYMPOSIUM ON LIGHTNING PROTECTION (XIV SIPDA), 2017, : 138 - 140
  • [35] THUNDER EVENTS AND CLOUD-TO-GROUND LIGHTNING FREQUENCIES
    CHANGNON, SA
    CHANGNON, D
    PYLE, RB
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D8): : 9495 - 9502
  • [36] POSITIVE CLOUD-TO-GROUND LIGHTNING IN SUMMER THUNDERSTORMS
    FUQUAY, DM
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC9) : 7131 - 7140
  • [37] THE ROLE OF CONTINUOUS DISCHARGES IN CLOUD-TO-GROUND LIGHTNING
    KITAGAWA, N
    BROOK, M
    WORKMAN, EJ
    JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (07): : 1965 - 1965
  • [38] CONTINUING CURRENT IN NEGATIVE CLOUD-TO-GROUND LIGHTNING
    SHINDO, T
    UMAN, MA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1989, 94 (D4): : 5189 - 5198
  • [39] Halos generated by negative cloud-to-ground lightning
    Frey, H. U.
    Mende, S. B.
    Cummer, S. A.
    Li, J.
    Adachi, T.
    Fukunishi, H.
    Takahashi, Y.
    Chen, A. B.
    Hsu, R.-R.
    Su, H.-T.
    Chang, Y.-S.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (18)
  • [40] THE ROLE OF CONTINUOUS DISCHARGES IN CLOUD-TO-GROUND LIGHTNING
    KITAGAWA, N
    BROOK, M
    WORKMAN, EJ
    JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (08): : 2503 - 2503