Long-distance quantum communication over noisy networks without long-time quantum memory

被引:16
|
作者
Mazurek, Pawel [1 ]
Grudka, Andrzej [2 ]
Horodecki, Michal [1 ]
Horodecki, Pawel [3 ]
Lodyga, Justyna [2 ]
Pankowski, Lukasz [1 ]
Przysiezna, Anna [1 ]
机构
[1] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
[2] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[3] Gdansk Univ Technol, Fac Tech Phys & Appl Math, PL-80952 Gdansk, Poland
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
COMPUTATION;
D O I
10.1103/PhysRevA.90.062311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission of quantum information in a D + 1-dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Long-distance quantum communication in a decoherence-free subspace
    Xue, Peng
    PHYSICS LETTERS A, 2008, 372 (46) : 6859 - 6866
  • [22] Quantum mechanisms of long-distance communication between nycleotides in DNA
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 746 - 746
  • [23] Long-distance quantum communication with atomic ensembles and linear optics
    Duan, LM
    Lukin, MD
    Cirac, JI
    Zoller, P
    NATURE, 2001, 414 (6862) : 413 - 418
  • [24] Efficient long-distance quantum communication using microtoroidal resonators
    Hong, F. Y.
    Xiong, S. J.
    Tang, W. H.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 62 (02): : 261 - 264
  • [25] Telecom-band quantum dot technologies for long-distance quantum networks
    Yu, Ying
    Liu, Shunfa
    Lee, Chang-Min
    Michler, Peter
    Reitzenstein, Stephan
    Srinivasan, Kartik
    Waks, Edo
    Liu, Jin
    NATURE NANOTECHNOLOGY, 2024, 19 (02) : 1389 - 1400
  • [26] Telecom-band quantum dot technologies for long-distance quantum networks
    Ying Yu
    Shunfa Liu
    Chang-Min Lee
    Peter Michler
    Stephan Reitzenstein
    Kartik Srinivasan
    Edo Waks
    Jin Liu
    Nature Nanotechnology, 2023, 18 : 1389 - 1400
  • [27] Long-distance quantum communication with atomic ensembles and linear optics
    L.-M. Duan
    M. D. Lukin
    J. I. Cirac
    P. Zoller
    Nature, 2001, 414 : 413 - 418
  • [28] Long-distance quantum communication with individual atoms and atomic ensembles
    Lin, Gong-Wei
    Zou, Xu-Bo
    Lin, Xiu-Min
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [29] Long-distance quantum communication with "polarization" maximally entangled states
    Hong, Fang-Yu
    Xiong, Shi-Jie
    Tang, W. H.
    ANNALS OF PHYSICS, 2010, 325 (05) : 1018 - 1025
  • [30] Continuous Variable Entanglement Distribution for Long-Distance Quantum Communication
    赵军军
    郭晓敏
    王旭阳
    王宁
    李永民
    彭堃墀
    Chinese Physics Letters, 2013, 30 (06) : 17 - 20