On superintegrable monopole systems

被引:3
|
作者
Hoque, Md Fazlul [1 ]
Marquette, Ian [1 ]
Zhang, Yao-Zhong [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
QUADRATIC ALGEBRA; HIDDEN SYMMETRY; OSCILLATOR; FIELD;
D O I
10.1088/1742-6596/965/1/012018
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Adding potentials to superintegrable systems with symmetry
    Fordy, Allan P.
    Huang, Qing
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2248):
  • [42] On superintegrable systems separable in Cartesian coordinates
    Grigoriev, Yu. A.
    Tsiganov, A. V.
    PHYSICS LETTERS A, 2018, 382 (32) : 2092 - 2096
  • [43] Symmetry reduction and superintegrable Hamiltonian systems
    Rodriguez, M. A.
    Tempesta, P.
    Winternitz, P.
    WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
  • [44] Superintegrable systems with position dependent mass
    Nikitin, A. G.
    Zasadko, T. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [45] Superintegrable systems on spaces of constant curvature
    Gonera, Cezary
    Kaszubska, Magdalena
    ANNALS OF PHYSICS, 2014, 346 : 91 - 102
  • [46] Superintegrable Hamiltonian systems:: Geometry and perturbations
    Fassò, F
    ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) : 93 - 121
  • [47] A note on some superintegrable Hamiltonian systems
    Fordy, Allan P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 115 : 98 - 103
  • [48] Jacobi, Ellipsoidal Coordinates and Superintegrable Systems
    E G Kalnins
    J M Kress
    W Miller
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 209 - 229
  • [49] Superintegrable Hamiltonian Systems: Geometry and Perturbations
    Francesco Fassò
    Acta Applicandae Mathematica, 2005, 87 : 93 - 121
  • [50] Superintegrable Hamiltonian Systems: an algebraic approach
    Calzada, J. A.
    Negro, J.
    del Olmo, M. A.
    WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175