Automated Analysis and Quantification of Human Mobility Using a Depth Sensor

被引:37
|
作者
Leightley, Daniel [1 ,2 ]
McPhee, Jamie S. [3 ]
Yap, Moi Hoon [1 ]
机构
[1] Manchester Metropolitan Univ, Sch Comp Math & Digital Technol, Manchester M15 6BH, Lancs, England
[2] Kings Coll London, Ctr Mil Hlth Res, London WC2R 2LS, England
[3] Manchester Metropolitan Univ, Sch Healthcare Sci, Manchester M15 6BH, Lancs, England
关键词
Depth sensor; human action recognition; human motion; mobility; motion quantification; MICROSOFT KINECT; REHABILITATION; ACCURACY; STROKE; SYSTEM; GAIT;
D O I
10.1109/JBHI.2016.2558540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analysis and quantification of human motion to support clinicians in the decision-making process is the desired outcome for many clinical-based approaches. However, generating statistical models that are free from human interpretation and yet representative is a difficult task. In this paper, we propose a framework that automatically recognizes and evaluates human mobility impairments using the Microsoft Kinect One depth sensor. The framework is composed of two parts. First, it recognizes motions, such as sit-to-stand or walking 4 m, using abstract feature representation techniques and machine learning. Second, evaluation of the motion sequence in the temporal domain by comparing the test participant with a statistical mobility model, generated from tracking movements of healthy people. To complement the framework, we propose an automatic method to enable a fairer, unbiased approach to label motion capture data. Finally, we demonstrate the ability of the framework to recognize and provide clinically relevant feedback to highlight mobility concerns, hence providing a route toward stratified rehabilitation pathways and clinicianled interventions.
引用
收藏
页码:939 / 948
页数:10
相关论文
共 50 条
  • [31] An in-depth analysis of four classes of antidepressants quantification from human serum using LC-MS/MS
    Fariha, Ramisa
    Deshpande, Prutha S. S.
    Rothkopf, Emma
    Jabrah, Mohannad
    Spooner, Adam
    Okoh, Oluwanifemi David
    Tripathi, Anubhav
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] AUTOMATED QUANTIFICATION AND ANALYSIS OF MANDIBULAR ASYMMETRY
    Darvann, Tron A.
    Hermann, Nuno V.
    Larsen, Per
    Olafsdottir, Hildur
    Hansen, Izabella V.
    Hove, Hanne D.
    Christensen, Leif
    Rueckert, Daniel
    Kreiborg, Sven
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 416 - 419
  • [33] Automated quantification of periodic discharges in human electroencephalogram
    McGraw, Christopher M.
    Rao, Samvrit
    Manjunath, Shashank
    Jing, Jin
    Brandon Westover, M.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (06):
  • [34] Automated Motion Sensor Quantification of Gait and Lower Extremity Bradykinesia
    Heldman, Dustin A.
    Filipkowski, Danielle E.
    Riley, David E.
    Whitney, Christina M.
    Walter, Benjamin L.
    Gunzler, Steven A.
    Giuffrida, Joseph P.
    Mera, Thomas O.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1956 - 1959
  • [35] A survey of human motion analysis using depth imagery
    Chen, Lulu
    Wei, Hong
    Ferryman, James
    PATTERN RECOGNITION LETTERS, 2013, 34 (15) : 1995 - 2006
  • [36] Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification
    Gifani, P.
    Rabiee, H. R.
    Hashemi, M. H.
    Taslimi, P.
    Ghanbari, M.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (3-4): : 212 - 229
  • [37] Quantification of Human Intelligence Using Principal Component Analysis
    Vignesh, M. Vel
    Boolog, Vignesh
    Bagyalakshmi, M.
    Thilaga, M.
    COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 1, ICCIS 2023, 2024, 967 : 225 - 237
  • [38] Parcellation of the human amygdala using recurrence quantification analysis
    Bielski, Krzysztof
    Adamus, Sylwia
    Kolada, Emilia
    Raczaszek-Leonardi, Joanna
    Szatkowska, Iwona
    NEUROIMAGE, 2021, 227
  • [39] Depth-resolved visualization and automated quantification of hyperreflective foci on OCT scans using optical attenuation coefficients
    Zhou, Hao
    Liu, Jeremy
    Laiginhas, Rita
    Zhang, Qinqin
    Cheng, Yuxuan
    Zhang, Yi
    Shi, Yingying
    Shen, Mengxi
    Gregori, Giovanni
    Rosenfeld, Philip J.
    Wang, Ruikang K.
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (08) : 4175 - 4189
  • [40] Human Action Recognition Using Convolutional Neural Network and Depth Sensor Data
    Ahmad, Zeeshan
    Illanko, Kandasamy
    Khan, Naimul
    Androutsos, Dimitri
    2019 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER COMMUNICATIONS (ITCC 2019), 2019, : 1 - 5