Discrimination of doenjang samples using a mass spectrometry-based electronic nose and human sensory preference testing

被引:5
|
作者
Hong, Yeun [1 ,2 ]
Noh, Bong-Soo [3 ]
Kim, Hae-Yeong [1 ,2 ]
机构
[1] Kyung Hee Univ, Inst Life Sci & Resources, Yongin 446701, Gyeonggi, South Korea
[2] Kyung Hee Univ, Dept Food Sci & Biotechnol, Yongin 446701, Gyeonggi, South Korea
[3] Seoul Womens Univ, Dept Food Sci & Technol, Seoul 139774, South Korea
基金
新加坡国家研究基金会;
关键词
doenjang; discrimination; electronic nose; spectrometry; COMPONENTS;
D O I
10.1007/s10068-015-0005-3
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Doenjang samples were discriminated using a mass spectrometry-based electronic nose (MS-E-nose) and discriminant function analysis (DFA). Human sensory preference testing was performed using the same samples. DFA plots indicated classification of doenjang samples into 3 groups. Samples with high discriminate function (DF) 1 and low DF2 scores contained fewer volatile compounds. Grouping results using the MS-E-nose and human sensory preference testing were compared. Fully mashed doenjang samples with more diverse and intense volatile compounds showed low DF1 and high preference scores. DF2 scores for selected samples showed positive correlations to the amount of sample. The MS-E-nose was a useful tool for discrimination of the aroma of doenjang samples and for confirmation of changes in the aroma intensities of doenjang samples.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [41] Mass Spectrometry-Based Identification of Proteins in Archival Malignant Melanoma Tissue Samples
    Elaba, Z. P.
    Rezaul, K.
    Murphy, M. J.
    Han, D. K.
    [J]. MODERN PATHOLOGY, 2010, 23 : 113A - 113A
  • [42] Considerations for mass spectrometry-based multi-omic analysis of clinical samples
    Teclemariam, Esei T.
    Pergande, Melissa R.
    Cologna, Stephanie M.
    [J]. EXPERT REVIEW OF PROTEOMICS, 2020, 17 (02) : 99 - 107
  • [43] Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples
    Ong, Ta-Hsuan
    Tillmaand, Emily G.
    Makurath, Monika
    Rubakhin, Stanislav S.
    Sweedler, Jonathan V.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2015, 1854 (07): : 732 - 740
  • [44] Mass spectrometry-based proteomics data from thousands of HeLa control samples
    Henry Webel
    Yasset Perez-Riverol
    Annelaura Bach Nielsen
    Simon Rasmussen
    [J]. Scientific Data, 11
  • [45] Assessing normalization methods in mass spectrometry-based proteome profiling of clinical samples
    Dubois, Etienne
    Galindo, Antonio Nunez
    Dayon, Loic
    Cominetti, Ornella
    [J]. BIOSYSTEMS, 2022, 215
  • [46] Classification and identification of bacteria using mass spectrometry-based proteomics
    Dworzanski, Jacek P.
    Snyder, A. Peter
    [J]. EXPERT REVIEW OF PROTEOMICS, 2005, 2 (06) : 863 - 878
  • [47] Discrimination of Platycodon grandiflorum and Codonopsis lanceolata using gas chromatography-mass spectrometry-based metabolomics approach
    Park, Hyeon-Yong
    Shin, Jeoung-Hwa
    Boo, Hee-Ock
    Gorinstein, Shela
    Ahn, Yun Gyong
    [J]. TALANTA, 2019, 192 : 486 - 491
  • [48] Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging
    Liu, Xinyue
    Fields, Rose
    Schweppe, Devin K.
    Paulo, Joao A.
    [J]. EXPERT REVIEW OF PROTEOMICS, 2021, 18 (09) : 795 - 807
  • [49] Mass spectrometry-based relative quantification of human neutrophil peptides 1, 2, and 3 from biological samples
    Thompson, L
    Turko, I
    Murad, F
    [J]. MOLECULAR IMMUNOLOGY, 2006, 43 (09) : 1485 - 1489
  • [50] Variant biomarker discovery using mass spectrometry-based proteogenomics
    Reilly, Luke
    Seddighi, Sahba
    Singleton, Andrew B.
    Cookson, Mark R.
    Ward, Michael E.
    Qi, Yue A.
    [J]. FRONTIERS IN AGING, 2023, 4