Identification for Wiener-Hammerstein systems under quantized inputs and quantized output observations

被引:10
|
作者
Guo, Jin [1 ,2 ]
Zhao, Yanlong [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic efficiency; identification; quantized inputs; quantized output observations; Wiener-Hammerstein system; FIR SYSTEMS;
D O I
10.1002/asjc.2237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the Wiener-Hammerstein system identification with quantized inputs and quantized output observations. By parameterizing the static nonlinear function, system identifiability is discussed first. Then, for the identifiable system a three-step algorithm is proposed to estimate the unknown parameters by employing the empirical measure-based method and the quasi-convex combination technique. Finally, the algorithm is proved to be strongly convergent, the mean-square convergence rate is presented, and the asymptotic efficiency is given by selecting a suitable transformation matrix. A numerical simulation is included to demonstrate the main results obtained.
引用
收藏
页码:118 / 127
页数:10
相关论文
共 50 条
  • [41] An Extension on the Quantized Input Condition for FIR Systems Identification with Quantized Observations
    He, Yanyu
    Guo, Jin
    Zhao, Yanlong
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 2156 - 2160
  • [42] Hierarchical Parameter Estimation for Wiener-Hammerstein Systems
    Ghanmi, Afef
    Salhi, Houda
    Elloumi, Mourad
    Kamoun, Samira
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 115 - 121
  • [43] A Time-Domain Fractional Approach for Wiener-Hammerstein Systems Identification
    Giordano, G.
    Sjoberg, J.
    IFAC PAPERSONLINE, 2015, 48 (28): : 1232 - 1237
  • [44] Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation
    Schoukens, Maarten
    Pintelon, Rik
    Rolain, Yves
    AUTOMATICA, 2014, 50 (02) : 628 - 634
  • [45] A fractional approach to identify Wiener-Hammerstein systems
    Vanbeylen, Laurent
    AUTOMATICA, 2014, 50 (03) : 903 - 909
  • [46] Controllability for a class of simple Wiener-Hammerstein systems
    Nesic, D
    SYSTEMS & CONTROL LETTERS, 1999, 36 (01) : 51 - 59
  • [47] Erratum: Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs (IEEE Transactions on Signal Processing)
    Nollett, B.S.
    Bershad, N.J.
    IEEE Transactions on Signal Processing, 2001, 49 (09)
  • [48] Left invertibility of discrete systems with finite inputs and quantized output
    Dubbini, Nevio
    Piccoli, Benedetto
    Bicchi, Antonio
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4687 - 4692
  • [49] Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for gaussian inputs (vol 48, pg 557, 2000)
    Bershad, NJ
    Bouchired, S
    Castanie, F
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (09) : 2162 - 2162
  • [50] Non-fragile quantized H∞ output feedback control for nonlinear systems with quantized inputs and outputs
    Guo, Xiang-Gui
    Wang, Jian-Liang
    Liao, Fang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01): : 415 - 438