HIGHER DEGREE IMMERSED FINITE ELEMENT METHODS FOR SECOND-ORDER ELLIPTIC INTERFACE PROBLEMS

被引:0
|
作者
Adjerid, Slimane [1 ]
Ben-Romdhane, Mohamed [2 ]
Lin, Tao [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Gulf Univ Sci & Technol, Dept Math & Nat Sci, Kuwait 32093, Kuwait
基金
美国国家科学基金会;
关键词
Immersed finite element; immersed interface; interface problems; Cartesian mesh method; structured mesh; higher degree finite element; APPROXIMATION CAPABILITY; SPACE; FORMULATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present higher degree immersed finite element (IFE) spaces that can be used to solve two dimensional second order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. The interpolation errors in the proposed piecewise pth degree spaces yield optimal O(h(p+1)) and O(h(p)) convergence rates in the L-2 and broken H-1 norms, respectively, under mesh refinement. A partially penalized method is developed which also converges optimally with the proposed higher degree IFE spaces. While this penalty is not needed when either linear or bilinear IFE space is used, a numerical example is presented to show that it is necessary when a higher degree IFE space is used.
引用
收藏
页码:541 / 566
页数:26
相关论文
共 50 条
  • [21] P1-nonconforming quadrilateral finite element methods for second-order elliptic problems
    Park, C
    Sheen, D
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 624 - 640
  • [22] A second-order immersed interface technique for an elliptic Neumann problem
    Bouchon, Francois
    Peichl, Gunther H.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (02) : 400 - 420
  • [23] HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1561 - 1583
  • [24] Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems
    Lin, Tao
    Lin, Yanping
    Sun, Weiwei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (04): : 807 - 823
  • [25] Nonconforming immersed finite element spaces for elliptic interface problems
    Guo, Ruchi
    Lin, Tao
    Zhang, Xu
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2002 - 2016
  • [26] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Lin, Tao
    Sheen, Dongwoo
    Zhang, Xu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 442 - 463
  • [27] An immersed finite element method for elliptic interface problems on surfaces
    Guo, Changyin
    Xiao, Xufeng
    Feng, Xinlong
    Tan, Zhijun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 54 - 67
  • [28] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Tao Lin
    Dongwoo Sheen
    Xu Zhang
    [J]. Journal of Scientific Computing, 2019, 79 : 442 - 463
  • [29] A second-order Cartesian grid finite volume technique for elliptic interface problems
    Kandilarov, Juri D.
    Koleva, Miglena N.
    Vulkov, Lubin G.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 679 - 687
  • [30] Finite-volume-element method for second-order quasilinear elliptic problems
    Bi, Chunjia
    Ginting, Victor
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1062 - 1089