A realization of the q-deformed harmonic oscillator: Rogers-Szego and Stieltjes-Wigert polynomials

被引:0
|
作者
Galetti, D [1 ]
机构
[1] UNESP, Inst Fis Teor, BR-01405900 Sao Paulo, SP, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss some results from q-series that can account for the foundations for the introduction of orthogonal polynomials on the circle and on the line, namely the Rogers-Szego and Stieltjes-Wigert polynomials. These polynomials are explicitly written and their orthogonality is verified. Explicit realizations of the raising and lowering operators for these polynomials are introduced in analogy to those of the Hermite polynomials that are shown to obey the q-commutation relations associated with the q-deformed harmonic oscillator.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 50 条
  • [11] A q-deformed harmonic oscillator from partial algebraization
    De Freitas, A
    Salamó, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (01): : 47 - 58
  • [12] First, Second Quantization and Q-Deformed Harmonic Oscillator
    Man Van Ngu
    Ngo Gia Vinh
    Nguyen Tri Lan
    Luu Thi Kim Thanh
    Nguyen Ai Viet
    IWTCP-2 AND NCTP-39, 2015, 627
  • [13] Modelling of q-deformed harmonic oscillator on quantum computer
    Samar, M. I.
    Tkachuk, V. M.
    PHYSICS LETTERS A, 2025, 530
  • [14] Spectral inverse problem for q-deformed harmonic oscillator
    P K Bera
    J Datta
    Pramana, 2006, 67 : 1023 - 1035
  • [15] The Wigner function of a q-deformed harmonic oscillator model
    Jafarov, E. I.
    Lievens, S.
    Nagiyev, S. M.
    Van der Jeugt, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5427 - 5441
  • [16] Spectral inverse problem for q-deformed harmonic oscillator
    Bera, P. K.
    Datta, J.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1023 - 1035
  • [17] MODELING OF q-DEFORMED HARMONIC OSCILLATOR ON QUANTUM COMPUTER
    Samar, M.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (04):
  • [18] Irreducibility and compositeness in q-deformed harmonic oscillator algebras
    Galetti, D
    Lunardi, JT
    Pimentel, BM
    Ruzzi, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (09) : 1673 - 1687
  • [19] Irreducibility and Compositeness in q-Deformed Harmonic Oscillator Algebras
    D. Galetti
    J. T. Lunardi
    B. M. Pimentel
    M. Ruzzi
    International Journal of Theoretical Physics, 2002, 41 : 1673 - 1687
  • [20] Complexity study of q-deformed quantum harmonic oscillator
    Nutku, Ferhat
    Sen, K. D.
    Aydiner, Ekrem
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533