Analyzing and repairing concept drift adaptation in data stream classification

被引:18
|
作者
Halstead, Ben [1 ]
Koh, Yun Sing [1 ]
Riddle, Patricia [1 ]
Pears, Russel [2 ]
Pechenizkiy, Mykola [3 ]
Bifet, Albert [4 ,5 ]
Olivares, Gustavo [6 ]
Coulson, Guy [6 ]
机构
[1] Univ Auckland, Sch Comp Sci, Auckland, New Zealand
[2] Auckland Univ Technol, Auckland, New Zealand
[3] Eindhoven Univ Technol, Eindhoven, Netherlands
[4] Univ Waikato, Hamilton, New Zealand
[5] IP Paris, Telecom Paris, LTCI, Paris, France
[6] Natl Inst Water & Atmospher Res, Auckland, New Zealand
关键词
Concept drift; Data stream classification; Recurring concepts; CLASSIFIERS; SELECTION;
D O I
10.1007/s10994-021-05993-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model may be able to capture these changes, however, this is usually not practical. Data stream based methods, which instead explicitly detect concept drift, have been shown to retain performance under unknown changing conditions. These methods adapt to concept drift by training a model to classify each distinct data distribution. However, we hypothesize that existing methods do not robustly handle real-world tasks, leading to adaptation errors where context is misidentified. Adaptation errors may cause a system to use a model which does not fit the current data, reducing performance. We propose a novel repair algorithm to identify and correct errors in concept drift adaptation. Evaluation on synthetic data shows that our proposed AiRStream system has higher performance than baseline methods, while is also better at capturing the dynamics of the stream. Evaluation on an air quality inference task shows AiRStream provides increased real-world performance compared to eight baseline methods. A case study shows that AiRStream is able to build a robust model of environmental conditions over this task, allowing the adaptions made to concept drift to be analysed and related to changes in weather. We discovered a strong predictive link between the adaptions made by AiRStream and changes in meteorological conditions.
引用
收藏
页码:3489 / 3523
页数:35
相关论文
共 50 条
  • [31] Streaming Data Classification with Concept Drift
    Althabiti, Mashail
    Abdullah, Manal
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2019, 12 (01): : 177 - 184
  • [32] Classification of concept drift data streams
    Padmalatha, E.
    Reddy, C. R. K.
    Rani, B. Padmaja
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [33] Semi-supervised Classification of Concept Drift Data Stream Based on Local Component Replacement
    Qin, Keke
    Wen, Yimin
    ARTIFICIAL INTELLIGENCE (ICAI 2018), 2018, 888 : 98 - 112
  • [34] Detection of Concept Drift for Learning from Stream Data
    Lee, Jeonghoon
    Magoules, Frederic
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 241 - 245
  • [35] PGNBC: Pearson Gaussian Naive Bayes classifier for data stream classification with recurring concept drift
    Babu, D. Kishore
    Ramadevi, Y.
    Ramana, K. V.
    INTELLIGENT DATA ANALYSIS, 2017, 21 (05) : 1173 - 1191
  • [36] Analyzing concept drift and shift from sample data
    Webb, Geoffrey I.
    Lee, Loong Kuan
    Goethals, Bart
    Petitjean, Francois
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (05) : 1179 - 1199
  • [37] Detecting concept drift using HEDDM in data stream
    Dongre, Snehlata S.
    Malik, Latesh G.
    Thomas, Achamma
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2019, 7 (2-3) : 164 - 179
  • [38] Detecting algorithm of concept drift from stream data
    Zhang, Jie
    Zhao, Feng
    Kongzhi yu Juece/Control and Decision, 2013, 28 (01): : 29 - 35
  • [39] Concept drift detection on stream data for revising DBSCAN
    Miyata Y.
    Ishikawa H.
    IEEJ Transactions on Electronics, Information and Systems, 2020, 140 (08) : 949 - 955
  • [40] Concept drift detection on stream data for revising DBSCAN
    Miyata, Yasushi
    Ishikawa, Hiroshi
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2021, 104 (01) : 87 - 94