MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs

被引:22
|
作者
Diaz, Josep [1 ]
Kaminski, Marcin
机构
[1] Univ Politecn Catalunya, Lleguatges Sistemes Informat, ES-08034 Barcelona, Spain
[2] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
关键词
computational complexity; max-cut; max-bisection; NP-hard; unit disk graphs;
D O I
10.1016/j.tcs.2007.02.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the MAX-CUT and MAX-BISECTION problems are NP-hard on unit disk graphs. We also show that X-precision aphs are planar for lambda > 1/root 2- and give a dichotomy theorem for MAX-CUT computational complexity on X-precision unit disk graphs. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [31] MAX-CUT has a randomized approximation scheme in dense graphs
    delaVega, WF
    RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (03) : 187 - 198
  • [32] EIGENVALUES AND THE MAX-CUT PROBLEM
    MOHAR, B
    POLJAK, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1990, 40 (02) : 343 - 352
  • [33] Branch and Cut based on the volume algorithm:: Steiner trees in graphs and Max-cut
    Barahona, Francisco
    Ladanyi, Laszlo
    RAIRO-OPERATIONS RESEARCH, 2006, 40 (01) : 53 - 73
  • [34] SPEEDING UP A MEMETIC ALGORITHM FOR THE MAX-BISECTION PROBLEM
    Zhu, Wenxing
    Liu, Yanpo
    Lin, Geng
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (02): : 151 - 168
  • [35] A new Lagrangian net algorithm for solving max-bisection problems
    Xu Fengmin
    Ma Xusheng
    Chen Baili
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3718 - 3723
  • [36] An improved kernel for Max-Bisection above tight lower bound
    Feng, Qilong
    Zhu, Senmin
    Wang, Jianxin
    THEORETICAL COMPUTER SCIENCE, 2020, 818 (818) : 12 - 21
  • [37] THE PERFORMANCE OF AN EIGENVALUE BOUND ON THE MAX-CUT PROBLEM IN SOME CLASSES OF GRAPHS
    DELORME, C
    POLJAK, S
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 145 - 156
  • [38] Partial optimal labeling search for a NP-Hard subclass of (max,+) problems
    Kovtun, I
    PATTERN RECOGNITION, PROCEEDINGS, 2003, 2781 : 402 - 409
  • [39] A memetic algorithm for the max-cut problem
    Lin, Geng
    Zhu, Wenxing
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 69 - 77
  • [40] Sparsest cut in planar graphs, maximum concurrent flows and their connections with the max-cut problem
    Baiou, Mourad
    Barahona, Francisco
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 59 - 75