Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro

被引:92
|
作者
Rochelle, LG
Fischer, BM
Adler, KB
机构
[1] N Carolina State Univ, Coll Vet Med, Dept Anat Physiol Sci & Radiol, Raleigh, NC 27606 USA
[2] Univ N Carolina, Cyst Fibrosis Pulm Res Ctr, Chapel Hill, NC USA
关键词
oxygen radicals; nitric oxide; airway epithelium; free radical;
D O I
10.1016/S0891-5849(97)00375-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellularly generated reactive species of both oxygen (ROS) and nitrogen (RNS) have been implicated in signaling responses in airway epithelial cells, but these radicals have not been measured directly in such cells. In this study, intracellular production of both ROS and RNS were measured in the same cell lysates of guinea pig tracheal epithelial (GPTE) cells maintained in primary culture. ROS and RNS were quantified under basal (constitutive) conditions and in response to different stimuli: LPS and TNF alpha [activators of inducible nitric oxide synthase (iNOS)]; several activators of calcium-dependent cNOS (ATP, bradykinin, ionophore A23187, and thapsigargin); and exogenous oxidant stress generated by addition of xanthine oxidase to purine (p + XO). Studies with LPS and TNF alpha also were performed using the murine macrophage cell line, RAW 264.7, as a positive control. Intracellular oxidant production was detected from oxidation of dihydrorhodamine to rhodamine. NOx was quantified by either chemiluminescent or fluorescent detection. NOS activity was measured as citrulline production from arginine. Basal production of oxidants by GPTE cells (0.08 + 0.00 nmol rhodamine) was less than 10% that of RAW.267 cells (0.91 + 0.03 nmol rhodamine). TNF alpha and LPS significantly increased intracellular oxidant production in GPTE cells, as did p + XO, but none of the cNOS activators affected production of oxidants in these cells. Concentrations of NO2 after 4 h in unstimulated RAW 264.7 and GPTE cells were similar and comprised 63% of total NOx in GPTE and 62% in RAW cells. TNF alpha and LPS both increased NO2 in GPTE cells, but none of the Ca++-mobilizing agents nor p + XO significantly affected intracellular RNS. The results suggest both ROS and RNS can be measured in the same lysates from airway epithelial cells, and that both ROS and RNS are produced in these cells in response to different stimuli. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:863 / 868
页数:6
相关论文
共 50 条
  • [41] Involvement of reactive oxygen species in bacterial killing within epithelial cells
    Battistoni, A
    Ajello, M
    Ammendola, S
    Superti, F
    Rotilio, G
    Valenti, P
    INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2004, 17 (01) : 71 - 76
  • [42] INDUCTION OF TRANSDIFFERENTIATION OF HUMAN KIDNEY EPITHELIAL CELLS WITH REACTIVE OXYGEN SPECIES
    Carrasco, F. B.
    Salvador, F.
    Camara, N. O.
    Nogueira, E.
    Origaca, C.
    Silva, A. P.
    INFLAMMATION RESEARCH, 2011, 60 : 89 - 89
  • [43] Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species
    Morikawa, Yoshifumi
    Shibata, Akinobu
    Okumura, Naoko
    Ikari, Akira
    Sasajima, Yasuhide
    Suenami, Koichi
    Sato, Kiyohito
    Takekoshi, Yuji
    El-Kabbani, Ossama
    Matsunaga, Toshiyuki
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2017, 314 : 1 - 11
  • [44] Mitochondrial regulation of production of reactive oxygen species and nitrogen in rat cells of kidney during ischemia/reperfusion
    Plotnikov E.Y.
    Vysokikh M.Y.
    Tsvirkun D.V.
    Kazachenko A.V.
    Kirpatovskii V.I.
    Zorov D.B.
    Doklady Biochemistry and Biophysics, 2005, 400 (1-6) : 80 - 83
  • [45] Detection of reactive oxygen species in thyroid epithelial cells by fluorescence microscopy
    Landex, NL
    Thomsen, J
    Kayser, L
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2004, 52 : S61 - S61
  • [46] DNA damage by reactive oxygen species in human breast epithelial cells
    Novak, RF
    Starcevic, SL
    Cameron, MJ
    Zukowski, KL
    FASEB JOURNAL, 2002, 16 (04): : A532 - A532
  • [47] In vitro reactive oxygen species production by histatins and copper(I,II)
    Houghton, Eric A.
    Nicholas, Kenneth M.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2009, 14 (02): : 243 - 251
  • [48] The Effect of the Red Light on Reactive Oxygen Species Production by Neutrophils in Vitro
    Nawrocka-Bogusz, H.
    Jaroszyk, F.
    ACTA PHYSICA POLONICA A, 2012, 121 (1A) : A57 - A60
  • [49] In vitro reactive oxygen species production by histatins and copper(I,II)
    Eric A. Houghton
    Kenneth M. Nicholas
    JBIC Journal of Biological Inorganic Chemistry, 2009, 14 : 243 - 251
  • [50] Reactive Oxygen and Nitrogen Species in Plants
    Corpas, Francisco J.
    Palma, Jose M.
    ANTIOXIDANTS, 2024, 13 (10)