Tribological performance of self-lubricating polyurethane elastomer compounding with the modified ultra-high molecular weight polyethylene

被引:10
|
作者
Xu, Bo [1 ]
Yin, Bifeng [1 ]
Li, Qianzhu [2 ]
Kuang, Xin [1 ]
Jia, Hekun [1 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Dept Power Machinery, Zhenjiang, Jiangsu, Peoples R China
[2] Techin Mat Co Ltd, Inst Adv Polymer Mat Technol, Dept Mat Dev, Nanjing, Peoples R China
来源
POLYMER ENGINEERING AND SCIENCE | 2021年 / 61卷 / 07期
关键词
mechanical properties; polyethylene; polyurethane elastomers; self-lubrication; surfaces; tribology; MECHANICAL-PROPERTIES; PLASMA TREATMENT; CARBON-FIBERS; WEAR BEHAVIOR; COMPOSITES; CRYSTALLINITY; FABRICATION; IMPACT; DRY;
D O I
10.1002/pen.25719
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ultra-high molecular weight polyethylene (UHMWPE) powder was modified by surface treatment technology, then its wettability, dispersibility, mechanical, and tribological properties in polyurethane elastomer were studied. The testing results showed that after surface treatment, UHMWPE powder could infiltrate and disperse evenly in polyurethane, and build micro cross-link with the contact surface of polymer substrate, which is conducive to enhancing the internal stress of polymer and improving the mechanical properties. With a small amount of modified UHMWPE being added into the casting polyurethane (CPU) elastomer, the right-angled tearing strength increases and the abrasion loss decreases. Moreover, the elastomer surface self-lubricating performance of CPU compounding with modified UHMWPE is enhanced: compared with the neat CPU sample, the average friction coefficient of the CPU samples with 5%, 10%, and 15% of modified UHMWPE is reduced by 46.3%, 41.5%, and 39.0%, respectively, and the surface wear resistance is improved; under the high-load working condition, the CPU elastomer with 5% of modified UHMWPE has the optimal tribological performance.
引用
收藏
页码:2033 / 2042
页数:10
相关论文
共 50 条
  • [21] Preliminary tribological evaluation of nanostructured diamond coatings against ultra-high molecular weight polyethylene
    Hill, Michael R.
    Catledge, Shane A.
    Konovalov, Valeriy
    Clem, William C.
    Chowdhury, Shafiul A.
    Etheridge, Brandon S.
    Stanishevsky, Andrei
    Lemons, Jack E.
    Vohra, Yogesh K.
    Eberhardt, Alan W.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2008, 85B (01) : 140 - 148
  • [22] Preparation and investigation of tribological properties of ultra-high molecular weight polyethylene (UHMWPE)/graphene oxide
    Bahrami, Hiva
    Ramazani, Ahmad S. A.
    Shafiee, Mojtaba
    Kheradmand, Amanj
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2016, 27 (09) : 1172 - 1178
  • [23] Scale effects in tribological properties of solid-lubricating composites made of ultra-high molecular weight polyethylene filled with calcium stearate particles
    Lurie, S. A.
    Volkov-Bogorodskiy, D. B.
    Knyzeva, A. G.
    Panin, S. V.
    Kornienko, L. A.
    INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, AUTOMATION AND CONTROL SYSTEMS 2015 (MEACS2015), 2016, 124
  • [24] Interfacial bonding properties of ultra-high molecular weight polyethylene fabric/thermoplastic polyurethane composites
    Zhang X.
    Ye W.
    Long X.
    Cao H.
    Sun Q.
    Ma Y.
    Wang Z.
    Fangzhi Xuebao/Journal of Textile Research, 2023, 44 (08): : 143 - 150
  • [25] Polymer nanocomposites of ultra-high molecular weight polyethylene
    Padhy, Vaibhav
    Kandasubramanian, Balasubramanian
    POLYMER BULLETIN, 2024, 81 (17) : 15259 - 15292
  • [26] Degradation rate of ultra-high molecular weight polyethylene
    Kurtz, SM
    Rimnac, CM
    Bartel, DL
    JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (01) : 57 - 61
  • [27] AN INVESTIGATION OF IN-PLANE PERFORMANCE OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE COMPOSITES
    Hazzard, Mark K.
    Curtis, Paul T.
    Iannucci, Lorenzo
    Hallett, Stephen
    Trask, Richard
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [28] An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites
    Langston, Tye
    COMPOSITE STRUCTURES, 2017, 179 : 245 - 257
  • [29] Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness
    Chen, Li
    Cao, Mingjin
    Fang, Qin
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 156
  • [30] Preparation of multimodal high and ultra-high molecular weight polyethylene
    de Agrela, Sara Pereira
    de Andrade Lima, Luiz Rogerio Pinho
    Souza, Rosemario Cerqueira
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2021, 26 (07) : 641 - 650