Oxidation mechanism and ferryl domain formation on the α-Fe2O3 (0001) surface

被引:29
|
作者
Jarvis, Emily A. [1 ]
Chaka, Anne M. [1 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
density functional calculations; hematite surfaces; oxidation; oxygen dissociation; reaction mechanisms;
D O I
10.1016/j.susc.2007.02.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent experimental evidence calls for a reinterpretation of the oxidized structure in chemically distinct domains of the hematite (0001) surface as the ferryl (Fe=O) termination rather than the bulk terminated O-3-Fe-Fe-R structure. Although this interpretation is consistent with experimental data and ab initio thermodynamics calculations, it raises serious questions about how molecular oxygen can be dissociated on a surface where reactive iron centers are slightly more than 5 angstrom apart. Here, we propose a novel cooperative bimolecular mechanism that provides a reasonable pathway for the formation of the unusual ferryl surface termination and should be readily reversible, which is important for understanding the function of hematite surfaces as an oxidation catalyst. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1909 / 1914
页数:6
相关论文
共 50 条
  • [31] Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001)
    Kiejna, Adam
    Pabisiak, Tomasz
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (09)
  • [32] A density functional theory study on the interaction mechanism between H2S and the α-Fe2O3(0001) surface
    Song, Jiajia
    Niu, Xiaoqi
    Ling, Lixia
    Wang, Baojun
    FUEL PROCESSING TECHNOLOGY, 2013, 115 : 26 - 33
  • [33] The Fe3O4 origin of the "Biphase" reconstruction on α-Fe2O3(0001)
    Lanier, Courtney H.
    Chiaramonti, Ann N.
    Marks, Laurence D.
    Poeppelmeier, Kenneth R.
    SURFACE SCIENCE, 2009, 603 (16) : 2574 - 2579
  • [34] The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping
    Zhao, Peng
    Wu, Fan
    Kronawitter, Coleman X.
    Chen, Zhu
    Yao, Nan
    Koel, Bruce E.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) : 26797 - 26803
  • [35] Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3(0001) surface
    Yin, Shuxia
    Ma, Xiaoyan
    Ellis, D. E.
    SURFACE SCIENCE, 2007, 601 (12) : 2426 - 2437
  • [36] A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles
    Hoh, Soon Wen
    Thomas, Liam
    Jones, Glenn
    Willock, David J.
    RESEARCH ON CHEMICAL INTERMEDIATES, 2015, 41 (12) : 9587 - 9601
  • [37] A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles
    Soon Wen Hoh
    Liam Thomas
    Glenn Jones
    David J. Willock
    Research on Chemical Intermediates, 2015, 41 : 9587 - 9601
  • [38] Methanol oxidation on Fe2O3 catalysts and the effects of surface Mo
    Bowker, M.
    Gibson, E. K.
    Silverwood, I. P.
    Brookes, C.
    FARADAY DISCUSSIONS, 2016, 188 : 387 - 398
  • [39] The effect of surface vacancies on the interactions of Cl with a α-Fe2O3 (0001) surface and the role of Cl in depassivation
    Pang, Qin
    DorMohammadi, Hossein
    Isgor, O. Burkan
    Arnadottir, Liney
    CORROSION SCIENCE, 2019, 154 : 61 - 69
  • [40] Defective α-Fe2O3(0001): An ab Initio Study
    Manh-Thuong Nguyen
    Seriani, Nicola
    Gebauer, Ralph
    CHEMPHYSCHEM, 2014, 15 (14) : 2930 - 2935