Whitney-type theorems on extension of functions on Carnot groups

被引:0
|
作者
Vodopyanov, S. K. [1 ]
Pupyshev, I. M. [1 ]
机构
[1] Russian Acad Sci, Siberian Div, Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Carnot Group;
D O I
10.1134/S1064562406010236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Whitney's Theorem about extension of functions of various smoothness classes was generalized to Carnot groups. A Carnot group is defined as a connected simply connected Lie group whose Lie Algebra is graded. Various properties of differential operators were analyzed with respect to the Taylor polynomial on the Carnot group. The Lipschitz spaces for a particular variable (γ) were analyzed for different values of γ and more general moduli of continuity.
引用
下载
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [21] Loomis-Whitney inequalities on corank 1 Carnot groups
    Zhang, Ye
    ANNALES FENNICI MATHEMATICI, 2024, 49 (02): : 437 - 459
  • [22] Properties of a frequency of Almgren type for harmonic functions in Carnot groups
    Nicola Garofalo
    Kevin Rotz
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2197 - 2238
  • [23] Liouville Type Theorems for Non-linear Differential Inequalities on Carnot Groups
    Brandolini, Luca
    Magliaro, Marco
    GEOMETRIC METHODS IN PDE'S, 2015, 13 : 199 - 214
  • [24] Properties of a frequency of Almgren type for harmonic functions in Carnot groups
    Garofalo, Nicola
    Rotz, Kevin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 2197 - 2238
  • [25] Subharmonic functions on Carnot groups
    Bonfiglioli, A
    Lanconelli, E
    MATHEMATISCHE ANNALEN, 2003, 325 (01) : 97 - 122
  • [26] Convex functions on Carnot groups
    Juutinen, Petri
    Lu, Guozhen
    Manfredi, Juan J.
    Stroffolini, Bianca
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) : 191 - 200
  • [27] Subharmonic functions on Carnot groups
    Andrea Bonfiglioli
    Ermanno Lanconelli
    Mathematische Annalen, 2003, 325 : 97 - 122
  • [28] The A∞ property of elliptic measures for operators with coefficients supported in Whitney-type cubes
    Navarro-Burruel, Marysol
    Rivera-Noriega, Jorge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 515 - 531
  • [29] Whitney extension theorems for convex functions of the classes C1 and C1,ω
    Azagra, Daniel
    Mudarra, Carlos
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 133 - 158
  • [30] Quantitative Whitney type covering theorems
    Kruglyak, NY
    DOKLADY AKADEMII NAUK, 1997, 352 (01) : 26 - 27