Hyperbolic trajectories of time discretizations

被引:3
|
作者
Hagen, A [1 ]
机构
[1] Univ Texas, Dept Math, Arlington, TX 76019 USA
关键词
hyperbolicity; shadowing; time discretization; numerical dynamics; long time approximation; exponential dichotomy;
D O I
10.1016/j.na.2004.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of persistence of trajectories of time discretizations is addressed. Analogues of essential concepts in the theory of hyperbolic flows are formulated for time discretizations. We show these are appropriate by proving that the underlying flow inherits a hyperbolic trajectory of the time discretization. Approximation properties and inherited hyperbolicity properties are analyzed. Here explicit estimates in terms of the key problem parameters are provided. An auxiliary result on roughness of exponential dichotomies for time discretizations may be of independent interest. Directions of future research are indicated. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] THE TIME EVOLUTION OF SPECTRAL DISCRETIZATIONS OF HYPERBOLIC SYSTEMS
    LUSTMAN, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) : 1193 - 1198
  • [2] Time discretizations for numerical optimisation of hyperbolic problems
    Herty, Michael
    Schleper, Veronika
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) : 183 - 194
  • [3] Multirate Time Discretizations for Hyperbolic Partial Differential Equations
    Sandu, Adrian
    Constantinescu, Emil M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1411 - +
  • [4] Discretizations of the hyperbolic cosine
    Müller C.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 509 - 531
  • [5] Existence of Finite-Time Hyperbolic Trajectories for Planar Hamiltonian Flows
    Luu Hoang Duc
    Siegmund, Stefan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (03) : 475 - 494
  • [6] Computation of Distinguished Hyperbolic Trajectories in Time-dependent Vector Fields
    Yao, Peng
    Wang, Yanbo
    Chen, Gairong
    Li, Qiong
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 3909 - +
  • [7] Multigrid Schemes for High Order Discretizations of Hyperbolic Problems
    Ruggiu, Andrea A.
    Nordstrom, Jan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [8] Existence of Finite-Time Hyperbolic Trajectories for Planar Hamiltonian Flows
    Luu Hoang Duc
    Stefan Siegmund
    Journal of Dynamics and Differential Equations, 2011, 23 : 475 - 494
  • [9] A filtering monotonization approach for DG discretizations of hyperbolic problems
    Orlando, Giuseppe
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 129 : 113 - 125
  • [10] Multigrid Schemes for High Order Discretizations of Hyperbolic Problems
    Andrea A. Ruggiu
    Jan Nordström
    Journal of Scientific Computing, 2020, 82