Reducing Car-Sharing Relocation Cost through Non-Parametric Density Estimation and Stochastic Programming

被引:4
|
作者
Li, Xiaoming [1 ,2 ,3 ]
Wang, Chun [1 ]
Huang, Xiao [4 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ H3G 1M8, Canada
[2] Shenyang Aerosp Univ, Sch Comp, Shenyang 110136, Peoples R China
[3] Ericsson INC, Global Artificial Intelligence Accelerator GAIA I, Montreal, PQ H4R 2A4, Canada
[4] Concordia Univ, Concordia John Molson Sch Business JMSB, Montreal, PQ H3G 1M8, Canada
关键词
Car-Sharing Relocation; Data-Driven Optimization; Two-Stage Stochastic Programming; Kernel Density Estimation; Non-Parametric Learning;
D O I
10.1109/itsc45102.2020.9294599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a data-driven stochastic programming model for reducing car-sharing relocation cost under uncertain customer demands. Instead of using parametric methods to estimate demand probability distributions, we propose an integration of non-parametric kernel density estimation, sample average approximation and a two-stage stochastic programming model. The proposed approach computes high quality car-sharing relocation solutions by better leveraging the information provided by large-scale historical data. To validate the performance of the proposed approach, we conduct numerical experiments using the New York taxi trip data sets. Our results show that the proposed approach outperforms the parametric approach using Laplace and Poisson distributions and the deterministic model in terms of profit and combined holding and relocation costs. Most importantly, it reduces on average more than 50% of relocation rate compared with the parametric method and 67% of relocation rate compared with the deterministic model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optimizing Relocation Cost in Free-Floating Car-Sharing Systems
    Kypriadis, Damianos
    Pantziou, Grammati
    Konstantopoulos, Charalampos
    Gavalas, Damianos
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 4017 - 4030
  • [2] Density estimation with non-parametric methods
    Fadda, D
    Slezak, E
    Bijaoui, A
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1998, 127 (02): : 335 - 352
  • [3] A non-parametric estimator for stochastic volatility density
    Ouamaliche, Soufiane
    Sayah, Awatef
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2021, 11 (04) : 349 - 367
  • [4] A fast non-parametric density estimation algorithm
    Egecioglu, O
    Srinivasan, A
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (10): : 755 - 763
  • [5] A geometric approach to non-parametric density estimation
    Browne, Matthew
    [J]. PATTERN RECOGNITION, 2007, 40 (01) : 134 - 140
  • [6] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [7] Location deployment of depots and resource relocation for connected car-sharing systems through mobile edge computing
    Zhu, Xiaolu
    Li, Jinglin
    Liu, Zhihan
    Yang, Fangchun
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (06): : 1 - 15
  • [8] Predictive user-based relocation through incentives in one-way car-sharing systems
    Stokkink, Patrick
    Geroliminis, Nikolas
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2021, 149 (149) : 230 - 249
  • [9] Estimation of Cost Efficiency in Non-parametric Frontier Models
    Besstremyannaya, G.
    Simm, J.
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA-EKONOMIKA-ST PETERSBURG UNIVERSITY JOURNAL OF ECONOMIC STUDIES, 2019, 35 (01): : 3 - 21
  • [10] Non-parametric Density Estimation Based on Label Semantics
    Lawry, Jonathan
    Gonzalez-Rodriguez, Ines
    [J]. SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 183 - +