SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS IN AN ODD-DIMENSIONAL UNIT SPHERE

被引:2
|
作者
Kim, Hyang Sook [1 ]
Pak, Jin Suk [2 ]
机构
[1] Inje Univ, Inst Basic Sci, Sch Comp Aided Sci, Dept Computat Math, Kimhae 621749, South Korea
[2] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
关键词
Sasakian manifold; odd-dimensional unit sphere; contact CR-submanifold; scalar curvature;
D O I
10.4134/BKMS.2010.47.3.541
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive an integral formula on an (n + 1)dimensional, compact, minimal contact CR-submanifold M of (n - 1) contact CR-dimension immersed in a unit (2m+1)-sphere S(2m+1). Using this integral formula, we give a sufficient condition concerning with the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.
引用
下载
收藏
页码:541 / 549
页数:9
相关论文
共 50 条
  • [41] On the Ricci curvature of 3-submanifolds in the unit sphere
    Hu, Zejun
    Xing, Cheng
    ARCHIV DER MATHEMATIK, 2020, 115 (06) : 727 - 735
  • [42] On a flat spread-sphere geometry in odd-dimensional space
    Eiesland, J
    AMERICAN JOURNAL OF MATHEMATICS, 1913, 35 : 201 - 228
  • [43] A RIGIDITY THEOREM FOR HYPERSURFACES OF THE ODD-DIMENSIONAL UNIT SPHERE S2n+1(1)
    Gao, Mingzhu
    Hu, Zejun
    Xing, Cheng
    COLLOQUIUM MATHEMATICUM, 2023,
  • [44] Warped-product contact CR-submanifolds of Sasakian space forms
    Munteanu, MI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 75 - 120
  • [45] Contact CR-submanifolds of an indefinite Lorentzian para-Sasakian manifold
    Laha, Barnali
    Das, Bandana
    Bhattacharyya, Arindam
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2013, 5 (02) : 157 - 168
  • [46] The scalar curvature of minimal hypersurfaces in a unit sphere
    Suh, Young Jin
    Yang, Hae Young
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (02) : 183 - 200
  • [47] A RIGIDITY THEOREM FOR HYPERSURFACES OF THE ODD-DIMENSIONAL UNIT SPHERE S2n+1(1)
    Gao, Mingzhu
    Hu, Zejun
    Xing, Cheng
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 151 - 160
  • [48] The Infimum of the Energy of Unit Vector Fields on Odd-Dimensional Spheres
    Vincent Borrelli
    Fabiano Brito
    Olga Gil-Medrano
    Annals of Global Analysis and Geometry, 2003, 23 : 129 - 140
  • [49] Great circle fibrations and contact structures on odd-dimensional spheres
    Gluck, Herman
    Yang, Jingye
    GEOMETRIAE DEDICATA, 2023, 217 (06)
  • [50] FILLINGS AND FITTINGS OF UNIT COTANGENT BUNDLES OF ODD-DIMENSIONAL SPHERES
    Kwon, Myeonggi
    Zehmisch, Kai
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1253 - 1264