Towards a Traffic Data Enrichment Sensor based on Heterogeneous Data Fusion for ITS

被引:5
|
作者
Rettore, Paulo H. [1 ]
Lopes, Roberto Rigolin F. [2 ]
Maia, Guilherme [1 ]
Villas, Leandro A. [3 ]
Loureiro, Antonio A. F. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[2] Fraunhofer FKIE, Commun Syst, Bonn, Germany
[3] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Intelligent Transportation Systems; Heterogeneous Data Fusion; Big Data; Participatory Sensing;
D O I
10.1109/DCOSS.2019.00106
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we propose Traffic Data Enrichment Sensor (TraDES), towards a low-cost traffic sensor for Intelligent Transportation System (ITS) based on heterogeneous data fusion. TraDES aims at fusing data from vehicular traces with road traffic data to enrich current spatiotemporal traffic data. In that direction, we propose a robust methodology to group spatially and temporally these different data sources, producing a vehicular trace with its respective traffic conditions, which is given as input to a learning-based model based on Artificial Neural Networks (ANN). Hence, TraDES is an enriched traffic sensor that is able to sense (detect) traffic conditions using a scalable and low-cost approach and to increase the spatiotemporal traffic data coverage.
引用
收藏
页码:570 / 577
页数:8
相关论文
共 50 条
  • [1] Road Data Enrichment Framework Based on Heterogeneous Data Fusion for ITS
    Rettore, Paulo H. L.
    Santos, Bruno P.
    Lopes, Roberto Rigolin F.
    Maia, Guilherme
    Villas, Leandro A.
    Loureiro, Antonio A. F.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (04) : 1751 - 1766
  • [2] A data-driven optimization-based approach for freeway traffic state estimation based on heterogeneous sensor data fusion
    Zhang, Jinyu
    Huang, Di
    Liu, Zhiyuan
    Zheng, Yifei
    Han, Yu
    Liu, Pan
    Huang, Wei
    [J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2024, 189
  • [3] Road Traffic Density Estimation Based on Heterogeneous Data Fusion
    Zissner, Philipp
    Rettore, Paulo H. L.
    Santos, Bruno P.
    Lopes, Roberto Rigolin F.
    Sevenich, Peter
    [J]. 2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
  • [4] DEEP FUSION OF HETEROGENEOUS SENSOR DATA
    Liu, Zuozhu
    Zhang, Wenyu
    Quek, Tony Q. S.
    Lin, Shaowei
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5965 - 5969
  • [5] Reconstructing the Traffic State by Fusion of Heterogeneous Data
    Treiber, Martin
    Kesting, Arne
    Wilson, R. Eddie
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2011, 26 (06) : 408 - 419
  • [6] Data fusion on a distributed heterogeneous sensor network
    Lamborn, Peter
    Williams, Pamela J.
    [J]. MULTISENSOR, MULTISOURCE INFORMATIN FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2006, 2006, 6242
  • [7] Heterogeneous Sensor Fusion With Out Of Sync Data
    Chen, Biao
    Varshney, Pramod K.
    Zulch, Peter
    Distasio, Marcello
    Niu, Ruixin
    Shen, Dan
    Lu, Jingyang
    Chen, Genshe
    [J]. 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [8] Data fusion based coverage optimization in heterogeneous sensor networks: A survey
    Deng, Xianjun
    Jiang, Yalan
    Yang, Laurence T.
    Lin, Man
    Yi, Lingzhi
    Wang, Minghua
    [J]. INFORMATION FUSION, 2019, 52 : 90 - 105
  • [9] Data Enrichment Toolchain: A Data Linking and Enrichment Platform for Heterogeneous Data
    Sanchez, Luis
    Lanza, Jorge
    Santana, Juan Ramon
    Sotres, Pablo
    Gonzalez, Victor
    Martin, Laura
    Solmaz, Gurkan
    Kovacs, Erno
    Dietzel, Maren
    Summa, Anja
    Jafari, Amir Reza
    Minerva, Roberto
    Crespi, Noel
    [J]. IEEE ACCESS, 2023, 11 : 103079 - 103091
  • [10] Heterogeneous Sensor Data Fusion for Human Falling Detection
    Pan, Daohua
    Liu, Hongwei
    Qu, Dongming
    [J]. IEEE ACCESS, 2021, 9 : 17610 - 17619