MAGNETORESISTIVE RANDOM ACCESS MEMORIES FOR SPACE AND RADIATION-HARDENED APPLICATIONS

被引:0
|
作者
Katti, Romney R. [1 ]
机构
[1] Honeywell Aerosp, Plymouth, MN 55441 USA
关键词
D O I
10.1109/TMRC53175.2021.9605126
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magneto-resistive Random Access Memories (MRAMs) are of interest for space and radiation-hardened electronics applications, based on solid-state form factor, non-volatility, radiation hardness, modularity, reliability, scalability, fault tolerance, support for mission assurance, small size, low mass, and low power consumption. MRAMs provide higher bit storage densities and other advantages with respect to preceding space-qualified non-volatile magnetic solid-state memory technologies, such as magnetic plated wire memories and magnetic core memories. Honeywell has QML-qualified 16Mb single-chip package (SCP) and 64Mb multi-chip module (MCM) toggle MRAM products; and is developing products to scale towards and then beyond gigabit SCP and gigabyte MCM STT-MRAMs to offer long life (>15 years), unlimited write and read endurance (>10(15) cycles), unlimited data retention (>15 years), non-destructive readback, fast write and read cycle times (<50 ns), radiation hardness (>1Mrad(Si)), and low error rates (<10(-10) errors/bit/day at geosynchronous orbit at solar minimum with 100 mils of Al shielding) across a broad temperature range (-40 degrees C to +125 degrees C).
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Development of a Radiation-Hardened Lateral Power MOSFET for POL Applications
    Dodd, P. E.
    Shaneyfelt, M. R.
    Draper, B. L.
    Young, R. W.
    Savignon, D.
    Witcher, J. B.
    Vizkelethy, G.
    Schwank, J. R.
    Shen, Z. J.
    Shea, P.
    Landowski, M.
    Dalton, S. M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) : 3456 - 3462
  • [42] FULLY-DEPLETED SUBMICRON SOI FOR RADIATION-HARDENED APPLICATIONS
    BRADY, FT
    SCOTT, T
    BROWN, R
    DAMATO, J
    HADDAD, NF
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1994, 41 (06) : 2304 - 2309
  • [43] Random telegraph signals in a radiation-hardened CMOS active pixel sensor
    Bogaerts, J
    Dierickx, B
    Mertens, R
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (01) : 249 - 257
  • [44] A radiation-hardened Buck converter
    Yang, Pengbo
    Luo, Ping
    Li, Bo
    Xiao, Haoyang
    Lin, Rongxun
    Zhou, Xiao
    Zhen, Shaowei
    IEICE ELECTRONICS EXPRESS, 2019, 16 (13):
  • [45] A low-power, radiation-hardened, CAN-interface for system-on-chip space applications
    Pouiklis, Georgios
    Kottaras, George
    Psomoulis, Athanasios
    Sarris, Emmanuel
    Stamatopoulos, Nikolaos
    CEAS SPACE JOURNAL, 2012, 3 (3-4) : 89 - 100
  • [46] High-performance, Radiation-Hardened Electronics for Space and Lunar Environments
    Keys, Andrew S.
    Adams, James H.
    Cressler, John D.
    Dartyl, Ronald C.
    Johnson, Michael A.
    Patrick, Marshall C.
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM STAIF 2008, 2008, 969 : 749 - +
  • [47] The special radiation-hardened processors for new highly informative experiments in space
    Serdin, O. V.
    Antonov, A. A.
    Dubrovsky, A. G.
    Novogilov, E. A.
    Zuev, A. L.
    INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS, 2017, 798
  • [48] A CMOS oscillator for radiation-hardened, low-power space electronics
    Pouiklis, Georgios
    Kottaras, George
    Psomoulis, Athanasios
    Sarris, Emmanuel
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2013, 100 (07) : 913 - 927
  • [49] High performance radiation-hardened SRAM cell design for robust applications
    Kumar, Sandeep
    Mukherjee, Atin
    MICROELECTRONICS JOURNAL, 2023, 140
  • [50] APPLICATIONS OF SIMOX TECHNOLOGY TO CMOS LSI AND RADIATION-HARDENED DEVICES.
    Izumi, K.
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1986, B21 (2-4) : 124 - 128