A Comparative Study on Micro-Doppler Signature Generation Methods for UAVs Using Rotor Blade Model

被引:4
|
作者
Bozdag, Bahar Ozen [1 ]
Erer, Isin [1 ]
机构
[1] Istanbul Tech Univ, Telecommun Engn, Istanbul, Turkey
来源
2019 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2019) | 2019年
关键词
micro-Doppler signature; short time Fourier Transform; Wigner-Ville distribution (WVD); s method; rotor blade;
D O I
10.1109/ICEEE2019.2019.00064
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Identification of the unmanned aerial vehicle (UAV) is a challenging problem. For identification, micro-Doppler effects from the rotors of UAVs are widely used to extract the features. Short Time Fourier Transform (STFT), Wigner-Ville distribution (WVD) and s method are the most common methods to obtain micro-Doppler signatures. Rotor blade length, number of blades and rotation rate have significant distinguishable effects on the micro-Doppler signatures. In this paper, effect of blade length, number of blades and rotation rate on micro-Doppler signatures are presented.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 50 条
  • [21] Deep Learning for Classification of Mini-UAVs Using Micro-Doppler Spectrograms in Cognitive Radar
    Huizing, Albert
    Heiligers, Matijs
    Dekker, Bastiaan
    de Wit, Jacco
    Cifola, Lorenzo
    Harmanny, Ronny
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2019, 34 (11) : 46 - 55
  • [22] Exploitation of motion capture data for improved synthetic micro-Doppler signature generation with adversarial learning
    Erol, Baris
    Gurbuz, Sevgi Z.
    Amin, Moeness G.
    BIG DATA II: LEARNING, ANALYTICS, AND APPLICATIONS, 2020, 11395
  • [23] Radar Micro-Doppler Signature Generation Based on Time-Domain Digital Coding Metasurface
    Wang, Si Ran
    Dai, Jun Yan
    Ke, Jun Chen
    Chen, Zhan Ye
    Zhou, Qun Yan
    Qi, Zhen Jie
    Lu, Ying Juan
    Huang, Yan
    Sun, Meng Ke
    Cheng, Qiang
    Cui, Tie Jun
    ADVANCED SCIENCE, 2024, 11 (19)
  • [24] MOTION STATES CLASSIFICATION OF ROTOR TARGET BASED ON MICRO-DOPPLER FEATURES USING CNN
    Wang, Wantian
    Tang, Ziyue
    Xiong, Xin
    Chen, Yichang
    Zhang, Yuanpeng
    Sun, Yongjian
    Zhu, Zhenbo
    Zhou, Chang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1390 - 1393
  • [25] Estimating Vehicle Length Using FMCW Radar: A Micro-Doppler Signature Analysis Approach
    Deville, Victor R. J.
    Evans, Jamie S.
    Manton, Jonathan H.
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2372 - 2376
  • [26] Micro-doppler effect in radar: Phenomenon, model, and simulation study
    Chen, VC
    Li, FY
    Ho, SS
    Wechsler, H
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (01) : 2 - 21
  • [27] Drone Classification and Localization Using Micro-Doppler Signature with Low-Frequency Signal
    Sun, Yingxiang
    Fu, Hua
    Abeywickrama, Samith
    Jayasinghe, Lahiru
    Yuen, Chau
    Chen, Jiajia
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS 2018), 2018, : 413 - 417
  • [28] Extraction of Micro-Doppler Feature Using LMD Algorithm Combined Supplement Feature for UAVs and Birds Classification
    Dai, Ting
    Xu, Shiyou
    Tian, Biao
    Hu, Jun
    Zhang, Yue
    Chen, Zengping
    REMOTE SENSING, 2022, 14 (09)
  • [29] Modeling Small UAV Micro-Doppler Signature Using Millimeter-Wave FMCW Radar
    Passafiume, Marco
    Rojhani, Neda
    Collodi, Giovanni
    Cidronali, Alessandro
    ELECTRONICS, 2021, 10 (06) : 1 - 16
  • [30] UAV Micro-Doppler Signature Analysis Using DVB-S Based Passive Radar
    Ummenhofer, Martin
    Lavau, Louis Cesbron
    Cristallini, Diego
    O'Hagan, Daniel
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 1007 - 1012