Mixture Probabilistic Principal Geodesic Analysis

被引:0
|
作者
Zhang, Youshan [1 ]
Xing, Jiarui [2 ]
Zhang, Miaomiao [2 ,3 ]
机构
[1] Lehigh Univ, Comp Sci & Engn, Bethlehem, PA 18015 USA
[2] Univ Virginia, Elect & Comp Engn, Charlottesville, VA USA
[3] Univ Virginia, Comp Sci, Charlottesville, VA USA
关键词
REGRESSION; MANIFOLDS;
D O I
10.1007/978-3-030-33226-6_21
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dimensionality reduction on Riemannian manifolds is challenging due to the complex nonlinear data structures. While probabilistic principal geodesic analysis (PPGA) has been proposed to generalize conventional principal component analysis (PCA) onto manifolds, its effectiveness is limited to data with a single modality. In this paper, we present a novel Gaussian latent variable model that provides a unique way to integrate multiple PGA models into a maximum-likelihood framework. This leads to a well-defined mixture model of probabilistic principal geodesic analysis (MPPGA) on sub-populations, where parameters of the principal subspaces are automatically estimated by employing an Expectation Maximization algorithm. We further develop a mixture Bayesian PGA (MBPGA) model that automatically reduces data dimensionality by suppressing irrelevant principal geodesics. We demonstrate the advantages of our model in the contexts of clustering and statistical shape analysis, using synthetic sphere data, real corpus callosum, and mandible data from human brain magnetic resonance (MR) and CT images.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 50 条
  • [31] Statistics of shape via principal geodesic analysis on lie groups
    Fletcher, PT
    Lu, CL
    Joshi, S
    [J]. 2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 95 - 101
  • [32] Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors
    Fletcher, PT
    Joshi, S
    [J]. COMPUTER VISION AND MATHEMATICAL METHODS IN MEDICAL AND BIOMEDICAL IMAGE ANALYSIS, 2004, 3117 : 87 - 98
  • [33] Parkinsonian gait patterns quantification from principal geodesic analysis
    Nino, Santiago
    Olmos, Juan A.
    Galvis, Juan C.
    Martinez, Fabio
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 679 - 689
  • [34] Dihedral angles principal geodesic analysis using nonlinear statistics
    Nodehi, A.
    Golalizadeh, M.
    Heydari, A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (09) : 1962 - 1972
  • [35] Parkinsonian gait patterns quantification from principal geodesic analysis
    Santiago Niño
    Juan A. Olmos
    Juan C. Galvis
    Fabio Martínez
    [J]. Pattern Analysis and Applications, 2023, 26 : 679 - 689
  • [36] Prostate shape modeling based on principal geodesic analysis bootstrapping
    Dam, E
    Fletcher, PT
    Pizer, SM
    Tracton, G
    Rosenman, J
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 2, PROCEEDINGS, 2004, 3217 : 1008 - 1016
  • [37] K-means Principal Geodesic Analysis on Riemannian Manifolds
    Zhang, Youshan
    [J]. PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2019, VOL 1, 2020, 1069 : 578 - 589
  • [38] Principal Geodesic Analysis for the study of nonlinear Minimum Description Length
    Su, Zihua
    Lambrou, Tryphon
    Todd-Pokropek, Andrew
    [J]. MEDICAL IMAGING AND INFORMATICS, 2008, 4987 : 89 - 98
  • [39] Probabilistic modelling for DNA mixture analysis
    Cowell, R. G.
    Lauritzen, S. L.
    Mortera, J.
    [J]. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES, 2008, 1 (01) : 640 - 642
  • [40] Hierarchical Mixture Models: a Probabilistic Analysis
    Sandler, Mark
    [J]. KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 580 - 589