Optimization of a higher-order sandwich composite beam under uncertainties

被引:2
|
作者
Sharma, Himanshu [1 ]
Ganguli, Ranjan [1 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
关键词
Sandwich beam; Robust design optimization; Reliability-based design optimization; Reliability-based robust design optimization; Accelerated particle swarm optimization; Surrogate model; MULTIOBJECTIVE ROBUST OPTIMIZATION; PARTICLE SWARM OPTIMIZATION; WEIGHTED-SUM METHOD; DESIGN OPTIMIZATION; LAMINATED COMPOSITE; DYNAMICS;
D O I
10.1016/j.compstruct.2021.114003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present paper investigates the reliable and robust optimum design of a higher-order sandwich composite beam under the effect of uncertainty in material properties. The sandwich beam is modeled using the extended higher-order sandwich panel theory. The optimization approaches employed in this work are reliability-based design optimization, robust design optimization, and a hybrid reliability-based robust design optimization. The efficiency of the optimization process is enhanced by using a novel time domain spectral element methodbased polynomial chaos surrogate model. The performance of the surrogate model is further improved by using Sobol indices based sensitivity analysis. The optimization procedure is performed using an accelerated particle swarm optimization. The numerical results of the reliable and robust optimal design are presented for both the soft and stiff core sandwich beam. Furthermore, the effect of load density and allowable deflection on the optimal design is also examined.
引用
收藏
页数:20
相关论文
共 50 条