Influence of rapid thermal processing on carrier concentration in high resistivity silicon

被引:2
|
作者
Capello, Luciana [1 ]
Bertrand, Isabelle [1 ]
Kononchuk, Oleg [1 ]
机构
[1] Soitec, Chemin Franques, F-38190 Bernin, France
关键词
donors; rapid thermal annealing; silicon; vacancies; OXYGEN PRECIPITATION; VACANCIES; CRYSTAL;
D O I
10.1002/pssa.201700275
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we report changes in the carrier concentration of high resistivity Si wafers after rapid thermal annealing (RTA) anneals measured by spreading resistance technique. Spreading resistance technique (SRP) profiles clearly show the generation of donor centers with concentrations and depth distributions comparable to those of vacancy-related centers reported in the literature. Changes of carrier concentrations as a function of RTA temperature, duration, ramp down rate, and subsequent annealing in the 800-1000 degrees C range are consistent with the earlier literature data. The influence of annealing ambient is also studied. Annealing in pure Ar atmosphere leads to profiles dominated by in-diffusion of vacancies generated at the surface, while annealing in oxidized ambient results in well-known profiles controlled by out-diffusion of vacancies generated in the wafer bulk. Studies of the wafers with different oxygen content show that the concentration of the generated donors is directly proportional to O-i concentration. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Rapid thermal processing of next generation silicon solar cells
    Rohatgi, A
    Ebong, A
    Yelundur, V
    Ristow, A
    [J]. PROGRESS IN PHOTOVOLTAICS, 2000, 8 (05): : 515 - 527
  • [32] Bistable behavior of silicon wafer in rapid thermal processing setup
    Rudakov, V. I.
    Ovcharov, V. V.
    Kurenya, A. L.
    Prigara, V. P.
    [J]. MICROELECTRONIC ENGINEERING, 2012, 93 : 67 - 73
  • [33] Imprinting the Polytype Structure of Silicon Carbide by Rapid Thermal Processing
    Pezoldt, Joerg
    Cimalla, Volker
    [J]. CRYSTALS, 2020, 10 (06): : 1 - 21
  • [34] CARRIER CONCENTRATION OF INTRINSIC SILICON
    WASSERRAB, T
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1976, 31 (05): : 505 - 506
  • [35] The effect of patterns on thermal stress during rapid thermal processing of silicon wafers
    Hebb, JP
    Jensen, KF
    [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 1998, 11 (01) : 99 - 107
  • [36] Processing of microstrip detectors on Czochralski grown high resistivity silicon substrates
    Härkönen, J
    Tuominen, E
    Tuovinen, E
    Mehtälä, P
    Lassila-Perini, K
    Ovchinnikov, V
    Heikkilä, P
    Yli-Koski, M
    Palmu, L
    Kallijärvi, S
    Nikkilä, H
    Anttila, O
    Niinikoski, T
    Eremin, V
    Ivanov, A
    Verbitskaya, E
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 514 (1-3): : 173 - 179
  • [37] Effective passivation of the low resistivity silicon surface by a rapid thermal oxide plasma silicon nitride stack
    Narasimha, S
    Rohatgi, A
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (15) : 1872 - 1874
  • [38] Influence of the quartz window in a rapid thermal processing apparatus
    Logerais, PO
    Girtan, M
    Bouteville, A
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (01): : 139 - 143
  • [39] INFLUENCE OF OXYGEN ON SILICON RESISTIVITY
    CAZCARRA, V
    ZUNINO, P
    [J]. JOURNAL OF APPLIED PHYSICS, 1980, 51 (08) : 4206 - 4211
  • [40] Influence of high dose As ion implantation on electrical properties of high resistivity silicon
    Zhu He
    Zhang Bing-Po
    Wang Miao
    Hu Gu-Jin
    Dai Ning
    Wu Hui-Zhen
    [J]. ACTA PHYSICA SINICA, 2014, 63 (13)