Limit cycle induced by multiplicative noise in a system of coupled Brownian motors

被引:9
|
作者
Mangioni, SE
Wio, HS
机构
[1] Univ Nacl Mar del Plata, FCEyN, Dept Fis, RA-7600 Mar Del Plata, Argentina
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, Grp Fis Estadist, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Inst Balseiro, CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Inst Balseiro, UNCuyo, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056616
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a model consisting of N nonlinear oscillators with global periodic coupling, and local multiplicative and additive noises. The model was shown to undergo a nonequilibrium phase transition towards a broken-symmetry phase exhibiting noise-induced "ratchet" behavior. A previous study [H. S. Wio, S. Mangioni, and R. Deza, Physica D 168-169, 184 (2002)] focused on the relationship between the character of the hysteresis loop, the number of "homogeneous" mean-field solutions, and the shape of the stationary mean-field probability distribution function. Here, we show-as suggested by the absence of stable solutions when the load force is beyond a critical value-the existence of a limit cycle induced by both multiplicative noise and global periodic coupling.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Transport properties of elastically coupled fractional Brownian motors
    Lv, Wangyong
    Wang, Huiqi
    Lin, Lifeng
    Wang, Fei
    Zhong, Suchuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 437 : 149 - 161
  • [22] Elastically coupled two-dimensional Brownian motors
    Goko, H
    Igarashi, A
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [23] Time delay induced death in coupled limit cycle oscillators
    Reddy, DVR
    Sen, A
    Johnston, GL
    PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5109 - 5112
  • [24] Metastable switching in a planar limit cycle system with additive noise
    Schwemmer, Michael A.
    Newby, Jay M.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 317 : 15 - 27
  • [25] SYNCHRONIZATION OF COUPLED STOCHASTIC SYSTEMS WITH MULTIPLICATIVE NOISE
    Shen, Zhongwei
    Zhou, Shengfan
    Han, Xiaoying
    STOCHASTICS AND DYNAMICS, 2010, 10 (03) : 407 - 428
  • [26] Analysis of nonlinear coupled harmonics in multiplicative noise
    Wang, H.Z.
    Wang, S.X.
    Dai, Y.S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2001, 29 (01): : 75 - 79
  • [27] Dynamics of globally coupled rotators with multiplicative noise
    Kim, S
    Park, SH
    Ryu, CS
    Han, SK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (05): : 915 - 919
  • [28] Evolution of the system with multiplicative noise
    Olemskoi, AI
    Kharchenko, DO
    PHYSICA A, 2001, 293 (1-2): : 178 - 188
  • [29] Directed motion of Brownian motors: a ratchet model of two-coupled molecular motors
    Wen, Shutang
    Zhang, Hongwei
    Liu, Leian
    Sun, Xiaofeng
    Li, Yuxiao
    MODERN PHYSICS LETTERS B, 2007, 21 (28): : 1915 - 1921
  • [30] A biologically inspired ratchet model of two coupled Brownian motors
    Dan, D
    Jayannavar, AM
    Menon, GI
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) : 40 - 47