Two Weighted Higher-Order Dynamic Inequalities of Opial Type with Two Functions

被引:2
|
作者
Osman, M. M. [1 ]
Saker, S. H. [1 ,2 ]
Anderson, D. R. [3 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] New Mansoura Univ, Dept Math, New Mansoura City, Egypt
[3] Concordia Coll, Dept Math, Moorhead, MN 56562 USA
关键词
Opial's inequality; Holder's inequality; Dynamic inequality; Time scales; TIME SCALES; DERIVATIVES;
D O I
10.1007/s12346-022-00592-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some new dynamic inequalities of Opial type involving higher-order derivatives of two functions, with two different weights on time scales. From these inequalities, we will derive some special cases and give an improvement of some versions of recent results.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Some new Opial type dynamic inequalities via convex functions and applications
    Saker, S. H.
    Alzabut, J.
    Sayed, A. G.
    O'Regan, D.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [42] ON WEIGHTED INTEGRAL AND DISCRETE OPIAL-TYPE INEQUALITIES
    Andric, Maja
    Pecaric, Josip
    Peric, Ivan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1295 - 1307
  • [43] Refined inequalities of perturbed Ostrowski type for higher-order absolutely continuous functions and applications
    Erden, Samet
    Celik, Nuri
    Khan, Muhammad Adil
    AIMS MATHEMATICS, 2021, 6 (01): : 362 - 377
  • [44] Some opial-type inequalities with higher order delta derivatives on time scales
    El-Deeb, A. A.
    El-Sennary, H. A.
    Agarwal, Praveen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [45] Some opial-type inequalities with higher order delta derivatives on time scales
    A. A. El-Deeb
    H. A. El-Sennary
    Praveen Agarwal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [46] ON WEIGHTED GENERALIZATION OF TRAPEZOID TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION
    Budak, H.
    Sarikaya, M. Z.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 109 - 122
  • [47] Opial type inequalities for cosine and sine operator functions
    Anastassiou, George A.
    SEMIGROUP FORUM, 2008, 76 (01) : 149 - 158
  • [48] SOME WEIGHTED OPIAL-TYPE INEQUALITIES ON TIME SCALES
    Srivastava, H. M.
    Tseng, Kuei-Lin
    Tseng, Shio-Jenn
    Lo, Jen-Chieh
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01): : 107 - 122
  • [49] HIGHER-ORDER WIRTINGER INEQUALITIES
    KREITH, K
    SWANSON, CA
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1980, 85 : 87 - 110
  • [50] Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions
    Kalsoom, Humaira
    Rashid, Saima
    Idrees, Muhammad
    Chu, Yu -Ming
    Baleanu, Dumitru
    SYMMETRY-BASEL, 2020, 12 (01):