Video summarization using singular value decomposition

被引:0
|
作者
Gong, YH [1 ]
Liu, X [1 ]
机构
[1] NEC USA Inc, C&C Res Labs, San Jose, CA 95134 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel technique for video summarization based on the Singular Value Decomposition (SVD). For the input video sequence, we create a feature-frame matrix A, and perform the SVD on It. From this SVD, we are able to not only derive the refined feature space to better cluster visually similar frames, but also define a metric to measure the amount of visual content contained in each frame cluster using its degree of visual changes. Then, in the refined feature space. we find the most static frame cluster, define as the content unit, and use the content value computed from it as the threshold to cluster the rest of the frames. Based on this clustering result, either the optimal set of keyframes, or a summarized motion video with the user specified time length can be generated to support different user requirements for video browsing and content overview. Our approach ensures that the summarized video representation contains little redundancy, and gives equal attention to the same amount of contents.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 50 条
  • [21] Video shot-boundary detection using singular-value decomposition and statistical tests
    Cernekova, Zuzana
    Kotropoulos, Constantine
    Pitas, Ioannis
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2007, 16 (04)
  • [22] Background initialization in video data using singular value decomposition and robust principal component analysis
    Gowda V.B.
    Gopalakrishna M.T.
    Megha J.
    Mohankumar S.
    [J]. International Journal of Computers and Applications, 2023, 45 (09) : 600 - 609
  • [23] Transmit Beamforming Using Singular Value Decomposition
    Kirthiga, S.
    Govindankutty, Anjali
    Krishnan, Shilpa
    Nair, Sachin P.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,
  • [24] Signal modeling using Singular Value Decomposition
    Baig, Sobia
    Fazal-ur-Rehman
    [J]. ADVANCES IN COMPUTER, INFORMATION, AND SYSTEMS SCIENCES AND ENGINEERING, 2006, : 31 - +
  • [25] Image Enhancement Using Singular Value Decomposition
    Sugamya, Katta
    Pabboju, Suresh
    VinayaBabu, A.
    [J]. 2016 INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN INTEGRATED NAVIGATION SYSTEMS (RAINS), 2016,
  • [26] Image Reconstruction Using Singular Value Decomposition
    Karim, Samsul Ariffin Abdul
    Mustafa, Muhammad Izzatullah Mohd
    Karim, Bakri Abdul
    Hasan, Mohammad Khatim
    Sulaiman, Jumat
    Ismail, Mohd Tahir
    [J]. PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 269 - 274
  • [27] Compressive Sensing Using Singular Value Decomposition
    Xu, Lei
    Liang, Qilian
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, 2010, 6221 : 338 - 342
  • [28] Singular Value Decomposition on GPU using CUDA
    Lahabar, Sheetal
    Narayanan, P. J.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 840 - 849
  • [29] Tensor Decomposition of Biometric Data using Singular Value Decomposition
    Mistry, Nirav
    Tanwar, Sudeep
    Tyagi, Sudhanshu
    Singh, Pradeep Kr
    [J]. 2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 833 - 837
  • [30] Alignment and correspondence using singular value decomposition
    Luo, B
    Hancock, ER
    [J]. ADVANCES IN PATTERN RECOGNITION, 2000, 1876 : 226 - 235