Small Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhanced Proangiogenic Potential of Cardiac Fibroblasts via Angiopoietin-Like 4

被引:1
|
作者
Li, Jiejie [1 ]
Xu, Xin [1 ]
Fei, Suyan [2 ]
Wang, Ren [1 ]
Wang, Hua [2 ]
Zhu, Wei [1 ]
Zhao, Yuanyuan [1 ]
机构
[1] Jiangsu Univ, Sch Med, Zhenjiang, Jiangsu, Peoples R China
[2] Jiangsu Univ, Affiliated Hosp, Zhenjiang, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
EXOSOMES; ANGIOGENESIS; INFARCTION; REPAIR;
D O I
10.1155/2022/3229289
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background and Objectives. After myocardial hypoxic injury, it is important to enhance vascular formation and restore blood supply for injury repair. Previous studies have suggested that cardiac fibroblasts (CFs) play a crucial role in angiogenesis after myocardial injury. Small extracellular vesicles (sEVs) derived from human umbilical cord mesenchymal stem cells (hucMSCs) promote fibroblast-to-myofibroblast differentiation in inflammatory environment and have cardioprotective effects. It remains unknown whether sEVs regulate cardiac fibroblasts to promote angiogenesis after myocardial injury. Methods and Results. We isolated primary CFs from Sprague-Dawley rats (1-3 days old) and treated them with lipopolysaccharide (LPS) and LPS+sEVs. RNA sequencing analysis revealed that angiopoietin-like 4 (Angptl4) was increased in the LPS+sEVs group more than in the LPS group. After inhibition of Angptl4 expression in sEVs and CFs, cell proliferation, Transwell migration, and tube formation assays were used to detect the angiogenic activity of human umbilical vein endothelial cells. beta-Catenin expression in CFs was detected by western blotting. The beta-catenin inhibitor ICG001 was used to examine whether beta-catenin was involved in the proangiogenic potential of CFs promoted by sEVs. sEVs enhanced the proangiogenic potential of CFs under inflammatory conditions, which was associated with beta-catenin signaling. The proangiogenic potential of CFs was decreased when Angptl4 was knocked down in CFs and in hucMSCs. Conclusions. The sEVs regulated CFs to promote angiogenesis via Angptl4 in an inflammatory environment. This may provide a research basis for treating myocardial injury with sEVs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Cardiac cells and mesenchymal stem cells derived extracellular vesicles: a potential therapeutic strategy for myocardial infarction
    Qin, Dan
    Wang, Xiaobo
    Pu, Jun
    Hu, Houxiang
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [42] Antifibrotic Effects of Extracellular Vesicles From Umbilical Cord-Mesenchymal Stem Cells on Lung Myofibroblast Cells
    Ortega, Francisco G.
    Rio, Carlos
    Jahn, Andreas
    Gaya, Antonio
    Calvo, Javier
    Monjo, Marta
    Montes-Worboys, Ana
    Molina-Molina, Maria
    Sala-Llinas, Ernest
    Ramis, Joana M.
    ARCHIVOS DE BRONCONEUMOLOGIA, 2023, 59 (07): : 454 - 457
  • [43] Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy
    Ma, Ke
    Zhu, Bo
    Wang, Zetao
    Cai, Peian
    He, Mingwei
    Ye, Danyan
    Yan, Guohua
    Zheng, Li
    Yang, Lujun
    Zhao, Jinmin
    JOURNAL OF NANOBIOTECHNOLOGY, 2020, 18 (01) : 163
  • [44] Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy
    Ke Ma
    Bo Zhu
    Zetao Wang
    Peian Cai
    Mingwei He
    Danyan Ye
    Guohua Yan
    Li Zheng
    Lujun Yang
    Jinmin Zhao
    Journal of Nanobiotechnology, 18
  • [45] The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells
    Zhang, Jin
    Yin, Huiqun
    Jiang, Hong
    Du, Xin
    Yang, Ziling
    TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY, 2020, 59 (04): : 527 - 533
  • [46] Proangiogenic features of umbilical cord matrix-derived mesenchymal stromal/stem cells and their ability to function as perivascular-like cells
    Joe, Y. A.
    Choi, M.
    Lee, H-S
    Naidansaren, P.
    Kim, H-K
    Eunju, O.
    Moon, E-Y
    Cha, J-H
    FEBS JOURNAL, 2013, 280 : 447 - 447
  • [47] Comprehensive proteomic analysis of exosome mimetic vesicles and exosomes derived from human umbilical cord mesenchymal stem cells
    Zhaoxia Zhang
    Tao Mi
    Liming Jin
    Mujie Li
    Chenghao Zhanghuang
    Jinkui Wang
    Xiaojun Tan
    Hongxu Lu
    Lianju Shen
    Chunlan Long
    Guanghui Wei
    Dawei He
    Stem Cell Research & Therapy, 13
  • [48] Comprehensive proteomic analysis of exosome mimetic vesicles and exosomes derived from human umbilical cord mesenchymal stem cells
    Zhang, Zhaoxia
    Mi, Tao
    Jin, Liming
    Li, Mujie
    Zhanghuang, Chenghao
    Wang, Jinkui
    Tan, Xiaojun
    Lu, Hongxu
    Shen, Lianju
    Long, Chunlan
    Wei, Guanghui
    He, Dawei
    STEM CELL RESEARCH & THERAPY, 2022, 13 (01)
  • [49] Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells
    Kang, In Sook
    Suh, Joowon
    Lee, Mi-Ni
    Lee, Chaeyoung
    Jin, Jing
    Lee, Changjin
    Yang, Young Il
    Jang, Yangsoo
    Oh, Goo Taeg
    BMB REPORTS, 2020, 53 (02) : 118 - 123
  • [50] Application Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells in Renal Diseases
    Li, Enhui
    Xu, Jia
    Liu, Ning
    Xiong, Qi
    Zhang, Weiwei
    Gong, Yizi
    Zhang, Linlin
    He, Yikai
    Ge, Huipeng
    Xiao, Xiangcheng
    STEM CELLS, 2024, 42 (03) : 216 - 229