Non-Abelian geometry

被引:4
|
作者
Dasgupta, K [1 ]
Yin, Z [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词
D O I
10.1007/s00220-002-0782-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spatial noncommutativity is similar and can even be related to the non-Abelian nature of multiple D-branes. But they have so far seemed independent of each other. Reflecting this decoupling, the algebra of matrix valued fields on noncommutafive space is thought to be the simple tensor product of constant matrix algebra and the Moyal-Weyl deformation. We propose scenarios in which the two become intertwined and inseparable. Therefore the usual separation of ordinary or noncommutative space from the internal discrete space responsible for non-Abelian symmetry is really the exceptional case of an unified structure. We call it non-Abelian geometry. This general structure emerges when multiple D-branes are configured suitably in a flat but varying B field background, or in the presence of non-Abelian gauge field background. It can also occur in connection with Taub-NUT geometry. We compute the deformed product of matrix valued functions using the lattice string quantum mechanical model developed earlier. The result is a new type of associative algebra defining non-Abelian geometry. A possible supergravity dual is also discussed.
引用
收藏
页码:313 / 338
页数:26
相关论文
共 50 条
  • [21] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [22] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [23] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [24] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [25] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [26] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [27] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [28] Non-Abelian eikonals
    Fried, HM
    Gabellini, Y
    PHYSICAL REVIEW D, 1997, 55 (04): : 2430 - 2440
  • [29] Non-Abelian supertubes
    José J. Fernández-Melgarejo
    Minkyu Park
    Masaki Shigemori
    Journal of High Energy Physics, 2017
  • [30] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107