Point spectrum for quasi-periodic long range operators

被引:4
|
作者
You, Jiangong [1 ]
Zhang, Shiwen [1 ]
Zhou, Qi [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Univ Paris 06, Lab Probabilites & Modeles aleatoires, F-75252 Paris 05, France
关键词
Point spectrum; quasi-periodic; long-range operator; reducibility; REDUCIBILITY; THEOREM;
D O I
10.4171/JST/85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize Gordon type argument to quasi- periodic operators with finite range interaction and prove that these operators have no point spectrum when the rational approximation rate of the base frequency is relatively large. We also show that, for any irrational frequency, there are operators with in finite range interaction possessing point spectrum. This is a new phenomenon which can not happen in the finite range interaction case.
引用
收藏
页码:769 / 781
页数:13
相关论文
共 50 条
  • [31] Holder Regularity of the Integrated Density of States for Quasi-periodic Long-range Operators on l2 (Zd)
    Ge, Lingrui
    You, Jiangong
    Zhao, Xin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (02) : 347 - 376
  • [32] On the spectrum of non-self-adjoint Dirac operators with quasi-periodic boundary conditions
    Makin, Alexander
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1099 - 1117
  • [33] On the nature of the spectrum of the quasi-periodic Schrodinger operator
    Fabbri, R
    Johnson, R
    Pavani, R
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (01) : 37 - 59
  • [34] The global long-range order of quasi-periodic patterns in Islamic architecture
    Al Ajlouni, Rima A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : 235 - 243
  • [35] QUASI-PERIODIC OSCILLATION OF A CORONAL BRIGHT POINT
    Samanta, Tanmoy
    Banerjee, Dipankar
    Tian, Hui
    ASTROPHYSICAL JOURNAL, 2015, 806 (02):
  • [36] Lyapounov exponents for discrete, quasi-periodic Schrodinger operators
    Bourgain, J
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 529 - 531
  • [37] Properties of a class of quasi-periodic Schrödinger operators
    Jiahao Xu
    Xu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [38] Ballistic transport for Schrodinger operators with quasi-periodic potentials
    Karpeshina, Yulia
    Parnovski, Leonid
    Shterenberg, Roman
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [39] Scattering Theory for Jacobi Operators with Quasi-Periodic Background
    Iryna Egorova
    Johanna Michor
    Gerald Teschl
    Communications in Mathematical Physics, 2006, 264 : 811 - 842
  • [40] Properties of a class of quasi-periodic Schrödinger operators
    Xu, Jiahao
    Xia, Xu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):