Cryocooler options for NGST and other space applications

被引:0
|
作者
Lindensmith, CA [1 ]
Bowman, RC [1 ]
Wade, LA [1 ]
Crumb, D [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have assessed the technology status of long-life cryocoolers for space applications below 20 K. Two-stage Joule-Thomson (J-T) cryocoolers are found to be the best candidates for a possible Next Generation Space Telescope (NGST) mid-infrared camera. A combination of a 20 K hydrogen J-T cooler using a sorption compressor precooling a 4 K helium J-T cooler using a mechanical compressor will be flight proven on Planck and provides the lowest risk option for NGST. The 4 K mechanical cooler can be replaced by a 6 K cooler that uses helium as a working gas and charcoal sorbent material in a J-T cycle to provide a vibration-free continuous-cycle cooler. We present a conceptual design and predicted performance for such a helium/charcoal sorption cooler. To provide 10 mW heat lift at 6 K such a cooler would require a total input power of approximately 93.4 W, and have a system mass of approximate to 33 kg. These coolers will also provide enabling technology for future missions, such as TPF, SPECS and IRSI.
引用
收藏
页码:106 / 115
页数:8
相关论文
共 50 条
  • [21] Performance of a two-stage pulse tube cryocooler for space applications
    Olson, JR
    Kotsubo, V
    Champagne, PJ
    Nast, TC
    CRYOCOOLERS 10, 1999, : 163 - 170
  • [22] Turbo-Brayton cryocooler technology for low temperature space applications
    Zagarola, MV
    Breedlove, JJ
    McCormick, JA
    Swift, WL
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 1029 - 1037
  • [23] The Next Generation Space Telescope (NGST)
    Mather, JC
    Seery, BD
    Bely, PY
    SPACE TELESCOPES AND INSTRUMENTS IV, 1996, 2807 : 98 - 105
  • [24] The Next Generation Space Telescope (NGST)
    Lilly, S
    PROCEEDINGS OF THE 11TH CONFERENCE ON ASTRONAUTICS: OPPORTUNITIES AND CHALLENGES FOR SPACE APPLICATIONS AND TECHNOLOGY, 2000, : 363 - 363
  • [25] Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications
    XuMing Liu
    LiuBiao Chen
    XianLin Wu
    Biao Yang
    Jue Wang
    WenXiu Zhu
    JunJie Wang
    Yuan Zhou
    Science China Technological Sciences, 2020, 63 : 434 - 439
  • [26] Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications
    LIU XuMing
    CHEN LiuBiao
    WU XianLin
    YANG Biao
    WANG Jue
    ZHU WenXiu
    WANG JunJie
    ZHOU Yuan
    Science China(Technological Sciences), 2020, (03) : 434 - 439
  • [27] Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications
    Liu, XuMing
    Chen, LiuBiao
    Wu, XianLin
    Yang, Biao
    Wang, Jue
    Zhu, WenXiu
    Wang, JunJie
    Zhou, Yuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 434 - 439
  • [28] Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications
    LIU XuMing
    CHEN LiuBiao
    WU XianLin
    YANG Biao
    WANG Jue
    ZHU WenXiu
    WANG JunJie
    ZHOU Yuan
    Science China(Technological Sciences), 2020, 63 (03) : 434 - 439
  • [29] Large format Si:As IBC array performance for NGST and future IR space telescope applications
    Ennico, K
    McKelvey, M
    McCreight, C
    McMurray, R
    Johnson, R
    Hoffman, AW
    Love, P
    Lum, N
    IR SPACE TELESCOPES AND INSTRUMENTS, PTS 1 AND 2, 2003, 4850 : 890 - 901
  • [30] Advanced cryocooler electronics for space
    Harvey, D
    Danial, A
    Davis, T
    Godden, J
    Jackson, M
    McCuskey, J
    Valenzuela, P
    CRYOGENICS, 2004, 44 (6-8) : 589 - 593