The Noether-Lefschetz locus of surfaces in toric threefolds

被引:7
|
作者
Bruzzo, Ugo [1 ,2 ]
Grassi, Antonella [3 ]
机构
[1] SISSA, Area Matemat, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34149 Trieste, Italy
[3] Univ Penn, David Rittenhouse Lab, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
关键词
Noether-Lefschetz locus; singular threefolds; hypersurfaces; simplicial toric varieties; Oda's conjecture; Hilbert schemes; Castelnuovo-Mumford regularity; Zariski and Kahler differentials; PROJECTIVE VARIETIES; HODGE STRUCTURE; HYPERSURFACES; DIFFERENTIALS;
D O I
10.1142/S0219199717500705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Noether-Lefschetz theorem asserts that any curve in a very general surface X in P-3 of degree d >= 4 is a restriction of a surface in the ambient space, that is, the Picard number of X is 1. We proved previously that under some conditions, which replace the condition d >= 4, a very general surface in a simplicial toric threefold P-Sigma (with orbifold singularities) has the same Picard number as P-Sigma. Here we define the Noether-Lefschetz loci of quasi-smooth surfaces in PE in a linear system of a Cartier ample divisor with respect to a (-1)-regular, respectively 0-regular, ample Cartier divisor, and give bounds on their codimensions. We also study the components of the Noether-Lefschetz loci which contain a line, defined as a rational curve which is minimal in a suitable sense.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Non-Density of the Exceptional Components of the Noether-Lefschetz Locus
    Baldi, Gregorio
    Klingler, Bruno
    Ullmo, Emmanuel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (21) : 13642 - 13650
  • [22] On a problem of Noether-Lefschetz type
    Amerik, E
    COMPOSITIO MATHEMATICA, 1998, 112 (03) : 255 - 271
  • [23] The Noether-Lefschetz conjecture and generalizations
    Bergeron, Nicolas
    Li, Zhiyuan
    Millson, John
    Moeglin, Colette
    INVENTIONES MATHEMATICAE, 2017, 208 (02) : 501 - 552
  • [24] GROTHENDIECK-LEFSCHETZ AND NOETHER-LEFSCHETZ FOR BUNDLES
    Ravindra, G., V
    Tripathi, Amit
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5025 - 5034
  • [25] Developments in Noether-Lefschetz theory
    Brevik, John
    Nollet, Scott
    HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY, 2014, 608 : 21 - 50
  • [26] Noether-Lefschetz for K1 of a certain class of surfaces
    Chen, X
    Lewis, JD
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 (01): : 29 - 41
  • [27] The Noether-Lefschetz conjecture and generalizations
    Nicolas Bergeron
    Zhiyuan Li
    John Millson
    Colette Moeglin
    Inventiones mathematicae, 2017, 208 : 501 - 552
  • [28] Maximal components of Noether-Lefschetz locus for Beilinson-Hodge cycles
    Asakura, Masanori
    Saito, Shuji
    MATHEMATISCHE ANNALEN, 2008, 341 (01) : 169 - 199
  • [29] A second-order invariant of the Noether-Lefschetz locus and two applications
    MacLean, Catriona
    ASIAN JOURNAL OF MATHEMATICS, 2005, 9 (03) : 373 - 399
  • [30] A NOETHER-LEFSCHETZ THEOREM FOR LINKED SURFACES IN P4
    SPANDAW, JG
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (01): : 91 - 112