Hopf bifurcations in predator-prey systems with social predator behaviour

被引:8
|
作者
Pacheco, JM [1 ]
Rodriguez, C [1 ]
Fernandez, I [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria 35017, Spain
关键词
predator-prey; social behaviour; Hopf bifurcation;
D O I
10.1016/S0304-3800(97)00140-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This paper is devoted to the existence of Hopf bifurcations in predator-prey systems under the assumption that the predators show social behaviour. Using the theory of Hopf bifurcation, we prove that the social coefficient appears as an adequate bifurcation parameter. Also, some numerical results are presented in order to discuss the structure of bifurcating solutions. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [1] Hopf Bifurcations in a Predator-Prey Model with an Omnivore
    Li, Yongjun
    Romanovski, Valery G.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 1201 - 1224
  • [2] Hopf bifurcations in a predator-prey system with multiple delays
    Hu, Guang-Ping
    Li, Wan-Tong
    Yan, Xiang-Ping
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1273 - 1285
  • [3] Hopf Bifurcation in a Predator-Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey
    Zhang, Wenqi
    Jin, Dan
    Yang, Ruizhi
    [J]. MATHEMATICS, 2023, 11 (03)
  • [4] Colored-noise-induced Hopf bifurcations in predator-prey communities
    Mankin, Romi
    Laas, Tonu
    Sauga, Ako
    Ainsaar, Ain
    Reiter, Eerik
    [J]. PHYSICAL REVIEW E, 2006, 74 (02)
  • [5] Hopf bifurcations in a predator-prey system with a discrete delay and a distributed delay
    Zhang, Cun-Hua
    Yan, Xiang-Ping
    Cui, Guo-Hu
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4141 - 4153
  • [6] STABILITY AND HOPF BIFURCATIONS IN A DELAYED PREDATOR-PREY SYSTEM WITH A DISTRIBUTED DELAY
    Zhang, Cun-Hua
    Yan, Xiang-Ping
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2283 - 2294
  • [7] LOCAL AND GLOBAL HOPF BIFURCATIONS FOR A PREDATOR-PREY SYSTEM WITH TWO DELAYS
    Zhuang Kejun Li Xiangao Li Zunxian (School of Mathematical Sciences
    [J]. Annals of Applied Mathematics, 2006, (03) : 483 - 488
  • [8] Bifurcations in predator-prey systems with nonmonotonic functional response
    Liu, ZH
    Yuan, R
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (01) : 187 - 205
  • [9] Multiple bifurcations of a predator-prey system
    Xiao, Dongmei
    Zhang, Kate Fang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (02): : 417 - 433
  • [10] Hopf Bifurcations in a Predator–Prey Model with an Omnivore
    Yongjun Li
    Valery G. Romanovski
    [J]. Qualitative Theory of Dynamical Systems, 2019, 18 : 1201 - 1224