predator-prey system;
Bogdanov-Takens bifurcation;
Hopf bifurcation;
normal form;
D O I:
10.1016/j.nonrwa.2004.08.005
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider a predator-prey system with nonmonotonic functional response. The bifurcation analysis of the model shows that Hopf bifurcation can occur as the delay tau (taken as a parameter) crosses some critical values and the system has a Bogdanov-Takens singularity for any time delay value. Following the procedure of deriving normal form given by Faria and Magalhaes, we compute the normal form for the Hopf bifurcation of the model, and study the stability of the bifurcating non-trivial periodic solutions. We also obtain a versal unfolding of the model at the Bogdanov-Takens singularity under certain conditions. (C) 2004 Elsevier Ltd. All rights reserved.
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Huang, Jicai
Liu, Sanhong
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Liu, Sanhong
Ruan, Shigui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Dept Math, Coral Gables, FL 33146 USACent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
机构:
Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R ChinaChinese Acad Forestry, Res Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China