LADDER PYRAMID NETWORKS FOR SINGLE IMAGE SUPER-RESOLUTION

被引:0
|
作者
Mo, Zitao [1 ,2 ]
He, Xiangyu [1 ,2 ]
Li, Gang [1 ,2 ]
Cheng, Jian [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Ladder Pyramid Network; Lightweight Convolution; Super-Resolution;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Benefiting from the powerful representation capability of convolutional neural networks, the performance of single image super-resolution (SISR) has been substantially improved in recent years. However, many current CNN-based methods are computation-intensive because of large-size intermediate feature maps and inefficient convolutions. To resolve these problems, we propose Ladder Pyramid Network (LPN) for single image super-resolution. Firstly, we use strided convolution to reduce the size of the intermediate feature maps and thus reducing computation burden. In order to better balance the effectiveness and efficiency, we propose Ladder Pyramid Module to gradually fuse hierarchical features to enhance performance. Secondly, lightweight convolution block similar to Inverted Residual Module of Mobilenet-v2 was introduced into SISR, with which we build the network backbone and ladder feature pyramid. Experimental results demonstrate that the proposed Ladder Pyramid Network can achieve comparable or better performance than previous lightweight networks while reducing the amount of computation.
引用
收藏
页码:578 / 582
页数:5
相关论文
共 50 条
  • [21] Single image super-resolution based on convolutional neural networks
    Zou, Lamei
    Luo, Ming
    Yang, Weidong
    Li, Peng
    Jin, Liujia
    MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
  • [22] Blind single image super-resolution with a mixture of deep networks
    Wang, Yifan
    Wang, Lijun
    Wang, Hongyu
    Li, Peihua
    Lu, Huchuan
    PATTERN RECOGNITION, 2020, 102
  • [23] Enhanced pyramidal residual networks for single image super-resolution
    Babaoğlu İ.
    Kahveci S.
    Kılıç A.
    Neural Computing and Applications, 2024, 36 (19) : 11563 - 11577
  • [24] Pyramidal dense attention networks for single image super-resolution
    Wu, Huapeng
    Gui, Jie
    Zhang, Jun
    Kwok, James T.
    Wei, Zhihui
    IET IMAGE PROCESSING, 2022, 16 (12) : 3247 - 3257
  • [25] Wide receptive field networks for single image super-resolution
    Yang, Haoran
    Tong, Jiahui
    Dou, Qingyu
    Xiao, Long
    Jeon, Gwanggil
    Yang, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4859 - 4876
  • [26] Wide receptive field networks for single image super-resolution
    Haoran Yang
    Jiahui Tong
    Qingyu Dou
    Long Xiao
    Gwanggil Jeon
    Xiaomin Yang
    Multimedia Tools and Applications, 2022, 81 : 4859 - 4876
  • [27] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364
  • [28] Single Image Super-Resolution Using Feedback Attention Networks
    Zhang, Juntao
    Dong, Hongbin
    Huang, Ruolin
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2808 - 2814
  • [29] Image super-resolution using multi-granularity perception and pyramid attention networks
    Wang, Huan
    Wu, Chengdong
    Chi, Jianning
    Yu, Xiaosheng
    Hu, Qian
    Wu, Hao
    NEUROCOMPUTING, 2021, 443 : 247 - 261
  • [30] Single-image super-resolution based on an improved asymmetric Laplacian pyramid structure
    Liu, Xue
    Qiao, Shuang
    Zhang, Tian
    Zhao, Chenyi
    Yao, Xiangyu
    DIGITAL SIGNAL PROCESSING, 2024, 145