Canopy and understory nitrogen addition have different effects on fine root dynamics in a temperate forest: implications for soil carbon storage

被引:55
|
作者
Li, Xiaowei [1 ,2 ,3 ]
Zhang, Chenlu [1 ,2 ,3 ]
Zhang, Beibei [1 ]
Wu, Di [1 ]
Shi, Yifei [1 ]
Zhang, Wei [4 ]
Ye, Qing [4 ]
Yan, Junhua [4 ]
Fu, Juemin [5 ]
Fang, Chengliang [5 ]
Ha, Denglong [5 ]
Fu, Shenglei [1 ,2 ,3 ]
机构
[1] Henan Univ, Coll Environm & Planning, Kaifeng 475004, Peoples R China
[2] Henan Univ, Minist Educ, Key Lab Geospatial Technol Middle & Lower Yellow, Kaifeng 475004, Peoples R China
[3] Henan Univ, Henan Key Lab Integrated Air Pollut Control & Eco, Kaifeng 475004, Peoples R China
[4] Chinese Acad Sci, South China Bot Garden, Key Lab Vegetat Restorat & Management Degraded Ec, Guangzhou 510650, Peoples R China
[5] Jigongshan Natl Nat Reserve, Xinyang 464039, Peoples R China
基金
中国国家自然科学基金;
关键词
canopy nitrogen (N) input; fine roots; forests; soil carbon (C) storage; understory N input; ATMOSPHERIC N DEPOSITION; PLANT ECONOMICS SPECTRUM; CONIFER FOREST; BIOMASS; FERTILIZATION; MORPHOLOGY; LITTER; SEQUESTRATION; AVAILABILITY; LIMITATION;
D O I
10.1111/nph.17460
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Elucidating the effects of atmospheric nitrogen (N) deposition on fine root dynamics and the potential underlying mechanisms is required to understand the changes in belowground and aboveground carbon storage. However, research on these effects in forests has mostly involved direct understory addition of N and has ignored canopy interception and processing of N. Here, we conducted a field experiment comparing the effects of canopy addition of N (CAN) with those of understory addition of N (UAN) at three N-addition rates (0, 25 and 50 kg N ha(-1) yr(-1)) on fine root dynamics in a temperate deciduous forest. Fine root production and biomass were significantly higher with CAN than with UAN. At the same N-addition rate, increases in fine root production with CAN were at least two-fold greater than with UAN. At the high N-addition rate and relative to the control, fine root biomass was significantly increased by CAN (by 23.5%) but was significantly decreased by UAN (by 12.2%). Our results indicate that traditional UAN may underestimate the responses of fine root dynamics to atmospheric N deposition in forest ecosystems. Canopy N processes should be considered for more realistic assessments of the effects of atmospheric N deposition in forests.
引用
收藏
页码:1377 / 1386
页数:10
相关论文
共 50 条
  • [21] Effects of canopy and understory nitrogen addition on the structure and eco-exergy of a subtropical forest community
    Tian, Yang
    Lu, Hongfang
    Wang, Jun
    Lin, Yongbiao
    Campbell, Daniel E.
    Jian, Shuguang
    ECOLOGICAL INDICATORS, 2019, 106
  • [22] Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest
    Wenjuan Wang
    Qifeng Mo
    Xiaoge Han
    Dafeng Hui
    Weijun Shen
    Biology and Fertility of Soils, 2019, 55 : 723 - 736
  • [23] Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest
    Wang, Wenjuan
    Mo, Qifeng
    Han, Xiaoge
    Hui, Dafeng
    Shen, Weijun
    BIOLOGY AND FERTILITY OF SOILS, 2019, 55 (07) : 723 - 736
  • [24] Contrasting responses of soil organic carbon dynamics to long-term canopy and understory nitrogen addition in a subtropical forest (vol 247,108536,2024)
    Lu, Xiaofei
    Yu, Heng
    Gilliam, Frank S.
    Yue, Xu
    Huang, Jingchao
    Tang, Songbo
    Kuang, Yuanwen
    CATENA, 2025, 248
  • [25] Responses of sap flux and intrinsic water use efficiency to canopy and understory nitrogen addition in a temperate broadleaved deciduous forest
    Hu, Yanting
    Zhao, Ping
    Zhu, Liwei
    Zhao, Xiuhua
    Ni, Guangyan
    Ouyang, Lei
    Schafer, Karina V. R.
    Shen, Weijun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 648 : 325 - 336
  • [26] Carbon dynamics in subtropical forest soil: effects of atmospheric carbon dioxide enrichment and nitrogen addition
    Liu, Juxiu X.
    Zhou, Guoyi Y.
    Zhang, Deqiang Q.
    Xu, Zhihong H.
    Duan, Honglang L.
    Deng, Qi
    Zhao, Liang
    JOURNAL OF SOILS AND SEDIMENTS, 2010, 10 (04) : 730 - 738
  • [27] Carbon dynamics in subtropical forest soil: effects of atmospheric carbon dioxide enrichment and nitrogen addition
    Juxiu X. Liu
    Guoyi Y. Zhou
    Deqiang Q. Zhang
    Zhihong H. Xu
    Honglang L. Duan
    Qi Deng
    Liang Zhao
    Journal of Soils and Sediments, 2010, 10 : 730 - 738
  • [28] Roles of dominant understory Sasa bamboo in carbon and nitrogen dynamics following canopy tree removal in a cool-temperate forest in northern Japan
    Fukuzawa, Karibu
    Shibata, Hideaki
    Takagi, Kentaro
    Satoh, Fuyuki
    Koike, Takayoshi
    Sasa, Kaichiro
    PLANT SPECIES BIOLOGY, 2015, 30 (02) : 104 - 115
  • [29] Responses of litter, organic and mineral soil enzyme kinetics to 6 years of canopy and understory nitrogen additions in a temperate forest
    Liu, Yang
    Tan, Xiangping
    Wang, Yaya
    Guo, Zhiming
    He, Dan
    Fu, Shenglei
    Wan, Shiqiang
    Ye, Qing
    Zhang, Wei
    Liu, Wei
    Shen, Weijun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
  • [30] Depth-driven responses of microbial residual carbon to nitrogen addition approaches in a tropical forest: Canopy addition versus understory addition
    Kuang, Luhui
    Mou, Zhijian
    Li, Yue
    Lu, Xiaofei
    Kuang, Yuanwen
    Wang, Jun
    Wang, Faming
    Cai, Xi'an
    Zhang, Wei
    Fu, Shenglei
    Hui, Dafeng
    Lambers, Hans
    Sardans, Jordi
    Penuelas, Josep
    Ren, Hai
    Liu, Zhanfeng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 340