Canopy and understory nitrogen addition have different effects on fine root dynamics in a temperate forest: implications for soil carbon storage

被引:55
|
作者
Li, Xiaowei [1 ,2 ,3 ]
Zhang, Chenlu [1 ,2 ,3 ]
Zhang, Beibei [1 ]
Wu, Di [1 ]
Shi, Yifei [1 ]
Zhang, Wei [4 ]
Ye, Qing [4 ]
Yan, Junhua [4 ]
Fu, Juemin [5 ]
Fang, Chengliang [5 ]
Ha, Denglong [5 ]
Fu, Shenglei [1 ,2 ,3 ]
机构
[1] Henan Univ, Coll Environm & Planning, Kaifeng 475004, Peoples R China
[2] Henan Univ, Minist Educ, Key Lab Geospatial Technol Middle & Lower Yellow, Kaifeng 475004, Peoples R China
[3] Henan Univ, Henan Key Lab Integrated Air Pollut Control & Eco, Kaifeng 475004, Peoples R China
[4] Chinese Acad Sci, South China Bot Garden, Key Lab Vegetat Restorat & Management Degraded Ec, Guangzhou 510650, Peoples R China
[5] Jigongshan Natl Nat Reserve, Xinyang 464039, Peoples R China
基金
中国国家自然科学基金;
关键词
canopy nitrogen (N) input; fine roots; forests; soil carbon (C) storage; understory N input; ATMOSPHERIC N DEPOSITION; PLANT ECONOMICS SPECTRUM; CONIFER FOREST; BIOMASS; FERTILIZATION; MORPHOLOGY; LITTER; SEQUESTRATION; AVAILABILITY; LIMITATION;
D O I
10.1111/nph.17460
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Elucidating the effects of atmospheric nitrogen (N) deposition on fine root dynamics and the potential underlying mechanisms is required to understand the changes in belowground and aboveground carbon storage. However, research on these effects in forests has mostly involved direct understory addition of N and has ignored canopy interception and processing of N. Here, we conducted a field experiment comparing the effects of canopy addition of N (CAN) with those of understory addition of N (UAN) at three N-addition rates (0, 25 and 50 kg N ha(-1) yr(-1)) on fine root dynamics in a temperate deciduous forest. Fine root production and biomass were significantly higher with CAN than with UAN. At the same N-addition rate, increases in fine root production with CAN were at least two-fold greater than with UAN. At the high N-addition rate and relative to the control, fine root biomass was significantly increased by CAN (by 23.5%) but was significantly decreased by UAN (by 12.2%). Our results indicate that traditional UAN may underestimate the responses of fine root dynamics to atmospheric N deposition in forest ecosystems. Canopy N processes should be considered for more realistic assessments of the effects of atmospheric N deposition in forests.
引用
收藏
页码:1377 / 1386
页数:10
相关论文
共 50 条
  • [1] Different effects of canopy and understory nitrogen addition on soil organic carbon and its related processes in a subtropical forest
    Xiaofei Lu
    Wendan Ren
    Enqing Hou
    Songbo Tang
    Lingling Zhang
    Zhanfeng Liu
    Yongbiao Lin
    Shenglei Fu
    Dazhi Wen
    Yuanwen Kuang
    Journal of Soils and Sediments, 2021, 21 : 235 - 244
  • [2] Different effects of canopy and understory nitrogen addition on soil organic carbon and its related processes in a subtropical forest
    Lu, Xiaofei
    Ren, Wendan
    Hou, Enqing
    Tang, Songbo
    Zhang, Lingling
    Liu, Zhanfeng
    Lin, Yongbiao
    Fu, Shenglei
    Wen, Dazhi
    Kuang, Yuanwen
    JOURNAL OF SOILS AND SEDIMENTS, 2021, 21 (01) : 235 - 244
  • [3] Fine root biomass and morphology in a temperate forest are influenced more by canopy water addition than by canopy nitrogen addition
    Li, Wen
    Wang, Chuang
    Liu, Haowei
    Wang, Wenqian
    Sun, Ruomin
    Li, Mengke
    Shi, Yifei
    Zhu, Dandan
    Du, Wenzhi
    Ma, Lei
    Fu, Shenglei
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [4] Canopy and understory nitrogen additions differently affect soil microbial residual carbon in a temperate forest
    Chen, Yuanqi
    Zhang, Yu
    Zhang, Xu
    Stevens, Carly
    Fu, Shenglei
    Feng, Teng
    Li, Xiaowei
    Chen, Quan
    Liu, Shirong
    Hu, Shuijin
    GLOBAL CHANGE BIOLOGY, 2024, 30 (07)
  • [5] Canopy and Understory Nitrogen Addition Alters Organic Soil Bacterial Communities but Not Fungal Communities in a Temperate Forest
    Liu, Yang
    Tan, Xiangping
    Fu, Shenglei
    Shen, Weijun
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [6] Contrasting responses of soil organic carbon dynamics to long-term canopy and understory nitrogen addition in a subtropical forest
    Lu, Xiaofei
    Yu, Heng
    Gilliam, Frank S.
    Yue, Xu
    Huang, Jingchao
    Tang, Songbo
    Kuang, Yuanwen
    CATENA, 2024, 247
  • [7] Effects of long-term nitrogen addition on fine root dynamics in a temperate natural secondary forest
    Xing, Yajuan
    Liu, Guancheng
    Liang, Lu
    Yan, Guoyong
    Huang, Binbin
    Wang, Qinggui
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2023, 38 (03) : 154 - 165
  • [8] Effects of Nitrogen and Phosphorus Addition on Soil Carbon and Nitrogen Mineralization in Temperate Forest and Subtropical Forest
    Li R.
    Feng J.
    Zhu B.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (04): : 730 - 738
  • [9] Effects of long-term nitrogen addition and precipitation reduction on the fine root dynamics and morphology in a temperate forest
    Ning Dong
    Jun Zhou
    Guoyong Yan
    Guancheng Liu
    Yajuan Xing
    Qinggui Wang
    European Journal of Forest Research, 2022, 141 : 363 - 378
  • [10] Effects of long-term nitrogen addition and precipitation reduction on the fine root dynamics and morphology in a temperate forest
    Dong, Ning
    Zhou, Jun
    Yan, Guoyong
    Liu, Guancheng
    Xing, Yajuan
    Wang, Qinggui
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2022, 141 (03) : 363 - 378