Large-Scale Screening and Machine Learning for Metal-Organic Framework Membranes to Capture CO2 from Flue Gas

被引:14
|
作者
Situ, Yizhen [1 ]
Yuan, Xueying [1 ]
Bai, Xiangning [1 ]
Li, Shuhua [1 ]
Liang, Hong [1 ]
Zhu, Xin [1 ]
Wang, Bangfen [1 ]
Qiao, Zhiwei [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Joint Inst Guangzhou Univ & Inst Corros Sci & Tec, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
membrane separation; metal-organic frameworks; machine learning; MOF MEMBRANES; SEPARATION; ADSORPTION; DESIGN; PERFORMANCE; EQUILIBRIA; ASSIGNMENT; STORAGE;
D O I
10.3390/membranes12070700
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To combat global warming, as an energy-saving technology, membrane separation can be applied to capture CO2 from flue gas. Metal-organic frameworks (MOFs) with characteristics like high porosity have great potential as membrane materials for gas mixture separation. In this work, through a combination of grand canonical Monte Carlo and molecular dynamics simulations, the permeability of three gases (CO2, N-2, and O-2) was calculated and estimated in 6013 computation-ready experimental MOF membranes (CoRE-MOFMs). Then, the relationship between structural descriptors and permeance performance, and the importance of available permeance area to permeance performance of gas molecules with smaller kinetic diameters were found by univariate analysis. Furthermore, comparing the prediction accuracy of seven classification machine learning algorithms, XGBoost was selected to analyze the order of importance of six structural descriptors to permeance performance, through which the conclusion of the univariate analysis was demonstrated one more time. Finally, seven promising CoRE-MOFMs were selected, and their structural characteristics were analyzed. This work provides explicit directions and powerful guidelines to experimenters to accelerate the research on membrane separation for the purification of flue gas.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Diaminopropane-Appended Metal-Organic Framework Enabling Efficient CO2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism
    Milner, Phillip J.
    Siegelman, Rebecca L.
    Forse, Alexander C.
    Gonzalez, Miguel I.
    Runcevski, Tomce
    Martell, Jeffrey D.
    Reimer, Jeffrey A.
    Long, Jeffrey R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (38) : 13541 - 13553
  • [32] A robust and porous titanium metal-organic framework for gas adsorption, CO2 capture and conversion
    Pan, Xuze
    Si, Xuezhen
    Zhang, Xiaoying
    Yao, Qingxia
    Li, Yunwu
    Duan, Wenzeng
    Qiu, Yi
    Su, Jie
    Huang, Xianqiang
    DALTON TRANSACTIONS, 2023, 52 (12) : 3896 - 3906
  • [33] Combining large-scale screening and machine learning to predict the metal-organic frameworks for organosulfurs removal from high-sour natural gas
    Liang, Hong
    Yang, Wenyuan
    Peng, Feng
    Liu, Zili
    Liu, Jie
    Qiao, Zhiwei
    APL MATERIALS, 2019, 7 (09)
  • [34] Ultramicroporous metal-organic framework for efficient carbon dioxide capture from flue gas and natural gas
    Zheng, Yanchun
    Chen, Yiqi
    Niu, Junjie
    Zhao, Tao
    Ibragimov, Aziz Bakhtiyarovich
    Gao, Junkuo
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 338
  • [35] Applications of metal-organic framework composites in CO2 capture and conversion
    Jiewei Liu
    Chunying Chen
    Kun Zhang
    Li Zhang
    Chinese Chemical Letters, 2021, 32 (02) : 649 - 659
  • [36] CO2 Capture in Metal-Organic Framework Adsorbents: An Engineering Perspective
    Hu, Zhigang
    Wang, Yuxiang
    Shah, Bhuvan B.
    Zhao, Dan
    ADVANCED SUSTAINABLE SYSTEMS, 2019, 3 (01):
  • [37] Sulfone-functionalized metal-organic framework aerogels for selective CO2 capture from natural gas
    Zhao, Guodong
    Pan, Jingyu
    Liu, Chang
    Hu, Yinghe
    Gao, Zhe
    Zhuang, Xupin
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [38] Applications of metal-organic framework composites in CO2 capture and conversion
    Liu, Jiewei
    Chen, Chunying
    Zhang, Kun
    Zhang, Li
    CHINESE CHEMICAL LETTERS, 2021, 32 (02) : 649 - 659
  • [39] Thermodynamic complexity of CO2 capture in metal-organic framework sorbents
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [40] Functionalized Dual/Multiligand Metal-Organic Frameworks for Efficient CO2 Capture under Flue Gas Conditions
    Guo, Yangyang
    Xu, Li
    Zheng, Jia-Jia
    Geng, Na
    Wang, Yaofeng
    Yao, Mingshui
    Zhu, Tingyu
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (50) : 22456 - 22465