The Minimum Merrifield-Simmons Index of Unicyclic Graphs with Diameter at Most Four

被引:0
|
作者
Zhao, Kun [1 ]
Li, Shangzhao [2 ]
Dai, Shaojun [3 ]
机构
[1] Jiamusi Univ, Dept Math, Jiamusi 154007, Heilongjiang, Peoples R China
[2] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
[3] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
D O I
10.1155/2021/6680242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Merrifield-Simmons index i(G) of a graph G is defined as the number of subsets of the vertex set, in which any two vertices are nonadjacent, i.e., the number of independent vertex sets of G. In this paper, we determine the minimum Merrifield-Simmons index of unicyclic graphs with n vertices and diameter at most four.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On the extremal Merrifield-Simmons index and Hosoya index of quasi-tree graphs
    Li, Shuchao
    Li, Xuechao
    Jing, Wei
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2877 - 2885
  • [42] On the Hosoya index and the Merrifield-Simmons index of bicyclic graphs with given matching number
    Zhu, Zhongxun
    ARS COMBINATORIA, 2016, 128 : 117 - 126
  • [43] An Algorithm for Computing the Merrifield-Simmons Index
    Ahmadi, M. B.
    Dastkhezr, H. Alimorad
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2014, 71 (02) : 355 - 359
  • [44] Graphs with given number of cut vertices and extremal Merrifield-Simmons index
    Hua, Hongbo
    Zhang, Shenggui
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (10) : 971 - 980
  • [45] Merrifield-Simmons index and minimum Number of Independent Sets in Short Trees
    Frendrup, Allan
    Pedersen, Anders Sune
    Sapozhenko, Alexander A.
    Vestergaard, Preben Dahl
    ARS COMBINATORIA, 2013, 111 : 85 - 95
  • [46] The smallest Merrifield-Simmons index of (n, n+1)-graphs
    Deng, Hanyuan
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) : 320 - 326
  • [47] Extremal Multi-bridge Graphs With Respect To Merrifield-Simmons Index
    Chen, Shubo
    Liu, Weijun
    ARS COMBINATORIA, 2011, 102 : 161 - 172
  • [48] The Merrifield-Simmons Conjecture Holds for Bipartite Graphs
    Trinks, Martin
    JOURNAL OF GRAPH THEORY, 2013, 72 (04) : 478 - 486
  • [49] THE MERRIFIELD-SIMMONS INDEX OF AN INFINITE CLASS OF DENDRIMERS
    Ahmadi, M. B.
    Seif, M.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2010, 5 (02) : 335 - 338
  • [50] Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index
    Hua, Hongbo
    Xu, Xinli
    Wang, Hongzhuan
    FILOMAT, 2014, 28 (03) : 451 - 461