Fully Learned Multi-swarm Particle Swarm Optimization

被引:0
|
作者
Niu, Ben [1 ,2 ,3 ]
Huang, Huali [1 ]
Ye, Bin [4 ]
Tan, Lijing [5 ]
Liang, Jane Jing [6 ]
机构
[1] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Intelligent Machines, Hefei 230031, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Hong Kong, Peoples R China
[4] State Grid Anhui Econ Res Inst, Hefei 230022, Peoples R China
[5] Shenzhen Inst Informat Technol, Business Management Sch, Shenzhen 518172, Peoples R China
[6] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
multi-swarm particle swarm optimization; fully learned; particle swarm optimizer (PSO);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new variant of PSO, called fully learned multi-swarm particle swarm optimization (FLMPSO) for global optimization. In FLMPSO, the whole population is divided into a number of sub-swarms, in which the learning probability is employed to influence the exemplar of each individual and the center position of the best experience found so far by all the sub-swarms is also used to balance exploration and exploitation. Each particle updates its velocity based on its own historical experience or others relying on the learning probability, and the center position is also applied to adjust its flying. The experimental study on a set of six test functions demonstrates that FLMPSO outperform the others in terms of the convergence efficiency and the accuracy.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [31] Pressure Vessel Design Simulation: Implementing of Multi-Swarm Particle Swarm Optimization
    Salih, Sinan Q.
    Alsewari, AbdulRahman A.
    Yaseen, Zaher M.
    2019 8TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2019), 2019, : 120 - 124
  • [32] Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems
    Hu, Chengyu
    Wu, Xiangning
    Wang, Yongji
    Xie, Fuqiang
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 443 - +
  • [33] Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization
    Niu, Ben
    Huang, Huali
    Tan, Lijing
    Duan, Qiqi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (01) : 4 - 14
  • [34] Applying Multi-Swarm Accelerating Particle Swarm Optimization to Dynamic Continuous Functions
    Jiang, Yi
    Huang, Wei
    Chen, Li
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 710 - +
  • [35] Novel Multi-swarm Approach for Balancing Exploration and Exploitation in Particle Swarm Optimization
    Salih, Sinan Q.
    Alsewari, AbdulRahman A.
    Al-Khateeb, Bellal
    Zolkipli, Mohamad Fadli
    RECENT TRENDS IN DATA SCIENCE AND SOFT COMPUTING, IRICT 2018, 2019, 843 : 196 - 206
  • [36] Memoization in Model Checking for Safety Properties with Multi-Swarm Particle Swarm Optimization
    Kumazawa, Tsutomu
    Takimoto, Munehiro
    Kodama, Yasushi
    Kambayashi, Yasushi
    ELECTRONICS, 2024, 13 (21)
  • [37] Multi-swarm Particle Grid Optimization for Object Tracking
    Sha, Feng
    Yeung, Henry Wing Fung
    Chung, Yuk Ying
    Liu, Guang
    Yeh, Wei-Chang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 707 - 714
  • [38] A Hybrid Firefly with Dynamic Multi-swarm Particle Swarm Optimization for WSN Deployment
    Chang, Wei-Yan
    Soma, Prathibha
    Chen, Huan
    Chang, Hsuan
    Tsai, Chun-Wei
    JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (04): : 825 - 836
  • [39] Chaotic Multi-swarm Particle Swarm Optimization Using Combined Quartic Functions
    Tatsumi, Keiji
    Ibuki, Takeru
    Tanino, Tetsuzo
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2096 - 2101
  • [40] Surrogate-Assisted Multi-swarm Particle Swarm Optimization of Morphing Airfoils
    Fico, Francesco
    Urbino, Francesco
    Carrese, Robert
    Marzocca, Pier
    Li, Xiaodong
    ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, ACALCI 2017, 2017, 10142 : 124 - 133