DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data

被引:115
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel J. [1 ,3 ,4 ]
Van Camp, Pieter-Jan [1 ,2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,5 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Singh, Harinder [9 ,10 ,11 ]
Salomonis, Nathan [1 ,2 ,5 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45221 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45221 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Ctr Syst Immunol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
[9] Univ Pittsburgh, Ctr Syst Immunol, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Dept Immunol, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15620 USA
来源
CELL REPORTS | 2019年 / 29卷 / 06期
关键词
PROGENITORS;
D O I
10.1016/j.celrep.2019.09.082
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. While droplet- and well-based methods have increased the capture frequency of cells for scRNA-seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets with a combination of deconvolution analyses and the identification of unique cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm prevents the prediction of valid mixed-lineage and transitional cell states as doublets by considering their unique gene expression. DoubletDecon has an easy-to-use graphical user interface and is compatible with diverse species and unsupervised population detection algorithms.
引用
收藏
页码:1718 / +
页数:18
相关论文
共 50 条
  • [21] Inferring population dynamics from single-cell RNA-sequencing time series data
    Fischer, David S.
    Fiedler, Anna K.
    Kernfeld, Eric M.
    Genga, Ryan M. J.
    Bastidas-Ponce, Aimee
    Bakhti, Mostafa
    Lickert, Heiko
    Hasenauer, Jan
    Maehr, Rene
    Theis, Fabian J.
    NATURE BIOTECHNOLOGY, 2019, 37 (04) : 461 - +
  • [22] Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data
    Martin Barron
    Jun Li
    Scientific Reports, 6
  • [23] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [24] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [25] Inferring population dynamics from single-cell RNA-sequencing time series data
    David S. Fischer
    Anna K. Fiedler
    Eric M. Kernfeld
    Ryan M. J. Genga
    Aimée Bastidas-Ponce
    Mostafa Bakhti
    Heiko Lickert
    Jan Hasenauer
    Rene Maehr
    Fabian J. Theis
    Nature Biotechnology, 2019, 37 : 461 - 468
  • [26] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [27] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [28] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [29] A Data-Driven Clustering Recommendation Method for Single-Cell RNA-Sequencing Data
    Tian, Yu
    Zheng, Ruiqing
    Liang, Zhenlan
    Li, Suning
    Wu, Fang-Xiang
    Li, Min
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 772 - 789
  • [30] Power analysis of single-cell RNA-sequencing experiments
    Valentine Svensson
    Kedar Nath Natarajan
    Lam-Ha Ly
    Ricardo J Miragaia
    Charlotte Labalette
    Iain C Macaulay
    Ana Cvejic
    Sarah A Teichmann
    Nature Methods, 2017, 14 : 381 - 387