Metal-organic framework derived Co@NC/CNT hybrid as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction

被引:67
|
作者
Yu, Deshuang [1 ]
Ilango, P. Robert [1 ]
Han, Silin [1 ]
Ye, Min [1 ]
Hu, Yuxiang [2 ,3 ]
Li, Linlin [1 ]
Peng, Shengjie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Techno, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Univ Queensland, Nanomat Ctr, Sch Chem Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
基金
“创新英国”项目; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Cobalt nanoparticles; N-doped carbon; Carbon nanotubes; Electrocatalysts; Zn-air battery; NITROGEN-DOPED CARBON; BIFUNCTIONAL ELECTROCATALYSTS; HIGH-PERFORMANCE; CATALYTIC-ACTIVITY; EFFICIENT; COBALT; BATTERIES; STORAGE; FIBERS;
D O I
10.1016/j.ijhydene.2019.10.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Seeking a multifunctional electrocatalyst composed of earth-abundant elements for highly hydrogen and oxygen evolution reaction and oxygen reduction reaction (HER, OER and ORR) is technically imperative for the electrocatalytic applications. Herein, we report HER, OER and ORR electrocatalytic performances of metal-organic framework (MOF) derived cobalt nanoparticles encapsulated in nitrogen-doped carbon and carbon nanotube (CoONC/CNT). The optimized Co@NC/CNT hybrid shows superior HER and OER activities with a small overpotential of 137 mV and 302 mV at a current density of 10 mA cm(-2), respectively. Furthermore, the Co@NC/CNT as an air-cathode in secondary Zn-air battery demonstrates a confined potential gap of 0.88 V over 200 h and a maximum power density of 53.4 mW cm-2, which are much better than those of Pt/C. The outstanding performances are attributed to the synergistic effects from Co, and N embedded into carbon and CNT. More importantly, the unique surface structure contributes to expose many active sites for superior catalytic activity through allowing a large number of electrons. These outcomes not only prove a facile approach for the preparation of metals/carbon hybrid but also disclose its huge possible as a multifunctional electrocatalyst for sustainable energy systems. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:32054 / 32065
页数:12
相关论文
共 50 条
  • [1] Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction
    Zuozhong Liang
    Hongbo Guo
    Haitao Lei
    Rui Cao
    Chinese Chemical Letters, 2022, (08) : 3999 - 4002
  • [2] Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction
    Liang, Zuozhong
    Guo, Hongbo
    Lei, Haitao
    Cao, Rui
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3999 - 4002
  • [3] A Metal-Organic Framework-Derived Atomically Dispersed Yttrium as an Electrocatalyst for Oxygen Reduction Reaction
    Parida, Sanjit Kumar
    Chalke, Bhagyashree A.
    Kaur, Gurpreet
    Yadav, Ashok Kumar
    Jena, Hrudananda
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (04) : 1583 - 1589
  • [4] Phosphonate-Based Metal-Organic Framework Derived Co-P-C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Zhou, Tianhua
    Du, Yonghua
    Wang, Danping
    Yin, Shengming
    Tu, Wenguang
    Chen, Zhong
    Borgna, Armando
    Xu, Rong
    ACS CATALYSIS, 2017, 7 (09): : 6000 - 6007
  • [5] Metal-organic framework-derived electrocatalyst for oxygen reduction
    Cavanaugh, Jack
    Qian, Yuhong
    Zhao, Dan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Co/C nanomaterial derived from Co metal-organic framework for oxygen evolution reaction
    Hu, Xiabing
    Wang, Haoye
    Qi, Songya
    Su, Zilong
    Wang, Jiajun
    Chen, Kaixuan
    Li, Shuji
    Huang, Xuan
    Luo, Shiping
    Xie, Aijuan
    IONICS, 2022, 28 (02) : 813 - 821
  • [7] Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction
    Ge, Dongqi
    Liao, Longfei
    Li, Mingyu
    Yin, Yongli
    CATALYSTS, 2022, 12 (11)
  • [8] Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst
    Karuppasamy, K.
    Jothi, Vasanth Rajendiran
    Vikraman, Dhanasekaran
    Prasanna, K.
    Maiyalagan, T.
    Sang, Byoung-In
    Yi, Sung-Chul
    Kim, Hyun-Seok
    APPLIED SURFACE SCIENCE, 2019, 478 : 916 - 923
  • [9] Metal-organic framework derived bimetal oxide CuCoO2 as efficient electrocatalyst for the oxygen evolution reaction
    Gao, Han
    Yang, Miao
    Du, Zijuan
    Liu, Xing
    Dai, Xianglong
    Lin, Kun
    Bao, Xiao-Qing
    Li, Hong
    Xiong, Dehua
    DALTON TRANSACTIONS, 2022, 51 (15) : 5997 - 6006
  • [10] Amorphous Engineering of Scalable Metal-Organic Framework-Derived Electrocatalyst for Highly Efficient Oxygen Evolution Reaction
    Li, Yuwen
    Wu, Yuhang
    Li, Tongtong
    Yao, Yue
    Cai, Haotian
    Gao, Junkuo
    Qian, Guodong
    SMALL, 2024, 20 (28)