Phosphonate-Based Metal-Organic Framework Derived Co-P-C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction

被引:155
|
作者
Zhou, Tianhua [1 ,5 ]
Du, Yonghua [2 ]
Wang, Danping [3 ]
Yin, Shengming [1 ]
Tu, Wenguang [1 ]
Chen, Zhong [3 ]
Borgna, Armando [2 ]
Xu, Rong [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Inst Chem & Engn Sci, 1 Pesek Rd, Jurong Isl 627833, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, SO Nanyang Ave, Singapore 639798, Singapore
[4] Natl Res Fdn, CREATE C4T, CREATE Tower Level 11,1 Create Way, Singapore 138602, Singapore
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
来源
ACS CATALYSIS | 2017年 / 7卷 / 09期
基金
新加坡国家研究基金会;
关键词
oxygen evolution; cobalt phosphate; electrocatalysis; N-doped graphitic carbon; metal-organic frameworks; WATER OXIDATION CATALYST; LAYERED DOUBLE HYDROXIDE; EVOLVING CATALYST; ALKALINE-SOLUTION; PEROVSKITE OXIDE; HIGH-PERFORMANCE; NEUTRAL PH; COBALT; PHOSPHATE; IRON;
D O I
10.1021/acscatal.7b00937
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt phosphate is considered to be one of the most active catalysts for the oxygen evolution reaction (OER) in neutral or near-neutral pH media, but only a few transition-metal phosphates are investigated in alkaline media, probably due to their poor intrinsic electrical conductivity and/or tendency to aggregate. Herein, in situ-formed cobalt phosphate decorated with N-doped graphitic carbon was prepared using phosphonate-based metal organic frameworks (MOFs) as the precursor. It can serve as a highly active OER catalyst in alkaline media, affording a current density of 10 mA cm(-2) at a small overpotential of 215 mV on the Ni foam. A combination of X-ray absorption spectroscopy and high-resolution XPS elucidates the origin of the high activity. Our observations unveil that cobalt diphosphate having the distorted metal coordination geometry with long Co-O and Co-Co distances is mainly responsible for the high OER activity. These results not only demonstrate the potential of a low-cost OER catalyst derived from phosphonate-based MOF but also open a promising avenue into the exploration of highly active and stable catalysts toward replacing noble metals as oxygen evolution electrocatalysts.
引用
收藏
页码:6000 / 6007
页数:8
相关论文
共 50 条
  • [1] Metal-organic framework derived Co@NC/CNT hybrid as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction
    Yu, Deshuang
    Ilango, P. Robert
    Han, Silin
    Ye, Min
    Hu, Yuxiang
    Li, Linlin
    Peng, Shengjie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (60) : 32054 - 32065
  • [2] Co/C nanomaterial derived from Co metal-organic framework for oxygen evolution reaction
    Hu, Xiabing
    Wang, Haoye
    Qi, Songya
    Su, Zilong
    Wang, Jiajun
    Chen, Kaixuan
    Li, Shuji
    Huang, Xuan
    Luo, Shiping
    Xie, Aijuan
    IONICS, 2022, 28 (02) : 813 - 821
  • [3] An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework
    Yang, Liu
    Gao, Minggang
    Dai, Bin
    Guo, Xuhong
    Liu, Zhiyong
    Peng, Banghua
    ELECTROCHIMICA ACTA, 2016, 191 : 813 - 820
  • [4] Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst
    Karuppasamy, K.
    Jothi, Vasanth Rajendiran
    Vikraman, Dhanasekaran
    Prasanna, K.
    Maiyalagan, T.
    Sang, Byoung-In
    Yi, Sung-Chul
    Kim, Hyun-Seok
    APPLIED SURFACE SCIENCE, 2019, 478 : 916 - 923
  • [5] Metal-organic framework derived bimetal oxide CuCoO2 as efficient electrocatalyst for the oxygen evolution reaction
    Gao, Han
    Yang, Miao
    Du, Zijuan
    Liu, Xing
    Dai, Xianglong
    Lin, Kun
    Bao, Xiao-Qing
    Li, Hong
    Xiong, Dehua
    DALTON TRANSACTIONS, 2022, 51 (15) : 5997 - 6006
  • [6] Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction
    Ge, Dongqi
    Liao, Longfei
    Li, Mingyu
    Yin, Yongli
    CATALYSTS, 2022, 12 (11)
  • [7] Amorphous Engineering of Scalable Metal-Organic Framework-Derived Electrocatalyst for Highly Efficient Oxygen Evolution Reaction
    Li, Yuwen
    Wu, Yuhang
    Li, Tongtong
    Yao, Yue
    Cai, Haotian
    Gao, Junkuo
    Qian, Guodong
    SMALL, 2024, 20 (28)
  • [8] Trimetallic Co-Ni-Mn metal-organic framework as an efficient electrocatalyst for alkaline oxygen evolution reaction
    Taherinia, D.
    Hatami, H.
    Valadi, F. Mirzaee
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 922
  • [9] Synergistic cobalt-copper metal-organic framework-derived oxide electrocatalyst for efficient oxygen evolution reaction
    Chen, Taofeng
    Ren, Hangxing
    Li, Liming
    Tan, Wenyu
    He, Hanwei
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 313
  • [10] A binuclear Co-based metal-organic framework towards efficient oxygen evolution reaction
    Liu, Ning
    Zhang, QiaoQiao
    Guan, Jingqi
    CHEMICAL COMMUNICATIONS, 2021, 57 (41) : 5016 - 5019