Robust estimation and variable selection for the accelerated failure time model
被引:9
|
作者:
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USA
Li, Yi
[1
]
Liang, Muxuan
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, 1124 Columbia St, Seattle, WA 98104 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USA
Liang, Muxuan
[2
]
Mao, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USA
Mao, Lu
[1
]
Wang, Sijian
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Stat, New Brunswick, NJ USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USA
Wang, Sijian
[3
]
机构:
[1] Univ Wisconsin Madison, Dept Biostat & Med Informat, Sch Med & Publ Hlth, Madison, WI 53726 USA
[2] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, 1124 Columbia St, Seattle, WA 98104 USA
[3] Rutgers State Univ, Dept Stat, New Brunswick, NJ USA
This article concerns robust modeling of the survival time for cancer patients. Accurate prediction of patient survival time is crucial to the development of effective therapeutic strategies. To this goal, we propose a unified Expectation-Maximization approach combined with the L-1-norm penalty to perform variable selection and parameter estimation simultaneously in the accelerated failure time model with right-censored survival data of moderate sizes. Our approach accommodates general loss functions, and reduces to the well-known Buckley-James method when the squared-error loss is used without regularization. To mitigate the effects of outliers and heavy-tailed noise in real applications, we recommend the use of robust loss functions under the general framework. Furthermore, our approach can be extended to incorporate group structure among covariates. We conduct extensive simulation studies to assess the performance of the proposed methods with different loss functions and apply them to an ovarian carcinoma study as an illustration.
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Rekabdarkolaee, Hossein Moradi
Boone, Edward
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Boone, Edward
Wang, Qin
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA