Estimating the higher-order Randic index

被引:9
|
作者
Yero, Ismael G. [2 ]
Rodriguez-Velazquez, Juan A. [2 ]
Gutman, Ivan [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Kragujevac, Serbia
[2] Univ Rovira & Virgili, Dept Comp Engn & Math, Tarragona, Spain
关键词
CONNECTIVITY INDEX; MOLECULAR CONNECTIVITY; GRAPH; DESCRIPTORS;
D O I
10.1016/j.cplett.2010.02.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let G be a (molecular) graph with vertex set V = {v(1), v(2), ..., v(n)}. Let delta(v(i)) be the degree of the vertex v(i) is an element of V. If the vertices v(i1), v(i2), ... , v(ih+1) form a path of length h, h >= 1, in the graph G, then the hth order Randic index R-h of G is defined as the sum of the terms 1/root delta(v(i1))delta(v(i2)), ... , delta(v(ih+1)) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for R-h are obtained, in terms of the vertex degree sequence of G. Closed formulas for R-h are obtained for the case when G is regular or semiregular bipartite. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 120
页数:3
相关论文
共 50 条
  • [1] the Higher Randic Index
    Alizade, Yaser
    [J]. IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (02): : 257 - 263
  • [2] On higher-order Sombor index
    You, Meiling
    Deng, Hanyuan
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 579 - 594
  • [3] Higher-order nonlinearity of refractive index
    Tarazkar, Maryam
    Romanov, Dmitri A.
    Levis, Robert J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [4] Randic index and lexicographic order
    Araujo, O
    Rada, J
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2000, 27 (03) : 201 - 212
  • [5] A fast algorithm for estimating higher-order cumulants
    Alshebeili, SA
    [J]. ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 15 - 18
  • [6] Third order Randic index of phenylenes
    Zhang, Jie
    Deng, Hanyuan
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (01) : 12 - 18
  • [7] Estimating the gradient and higher-order derivatives on quantum hardware
    Mari, Andrea
    Bromley, Thomas R.
    Killoran, Nathan
    [J]. PHYSICAL REVIEW A, 2021, 103 (01)
  • [8] Estimating Higher-Order Moments of Nonlinear Time Series
    Gluhovsky, Alexander
    Agee, Ernest
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2009, 48 (09) : 1948 - 1954
  • [9] Efficient Parallel Algorithm for Estimating Higher-order Polyspectra
    Tomlinson, Joseph
    Jeong, Donghui
    Kim, Juhan
    [J]. ASTRONOMICAL JOURNAL, 2019, 158 (03):
  • [10] ESTIMATING DAMPING IN HIGHER-ORDER DYNAMIC-SYSTEMS
    BANHAM, JW
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (01) : 273 - 275