Efficient Parallel Algorithm for Estimating Higher-order Polyspectra

被引:11
|
作者
Tomlinson, Joseph [1 ,2 ]
Jeong, Donghui [1 ,2 ]
Kim, Juhan [3 ]
机构
[1] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Korea Inst Adv Study, Ctr Adv Computat, 85 Hoegiro, Seoul 130722, South Korea
来源
ASTRONOMICAL JOURNAL | 2019年 / 158卷 / 03期
关键词
large-scale structure of universe; methods: data analysis; DARK ENERGY SURVEY; FAST GENERATION; PERTURBATION-THEORY; BISPECTRUM; GALAXIES; GROWTH; BIAS; TOOL;
D O I
10.3847/1538-3881/ab3223
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nonlinearities in the gravitational evolution, galaxy bias, and redshift-space distortion drive the observed galaxy density fields away from the initial near-Gaussian states. Exploiting such a non-Gaussian galaxy density field requires measuring higher-order correlation functions, or, its Fourier counterpart, polyspectra. Here, we present an efficient parallel algorithm for estimating higher-order polyspectra. Based upon the Scoccimarro estimator, the estimator avoids direct sampling of polygons using the fast Fourier transform, and the parallelization overcomes the large memory requirement of the original estimator. In particular, we design the memory layout to minimize the inter-CPU communications, which excels in the code performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A fast algorithm for estimating higher-order cumulants
    Alshebeili, SA
    [J]. ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 15 - 18
  • [2] Efficient Algorithm and Coding for Higher-Order Compression
    Yaguchi, Kazuya
    Kobayashi, Naoki
    Shinohara, Ayumi
    [J]. 2014 DATA COMPRESSION CONFERENCE (DCC 2014), 2014, : 434 - 434
  • [3] Efficient Sequential and Parallel Algorithms for Estimating Higher Order Spectra
    Wang, Zigeng
    Mamun, Abdullah-Al
    Cai, Xingyu
    Ravishanker, Nalini
    Rajasekaran, Sanguthevar
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1743 - 1752
  • [4] ON HIGHER-ORDER PARALLEL HYPERSURFACES
    DILLEN, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (03): : 185 - 187
  • [5] An effIcient pruning algorithm for sparselized higher-order neural networks
    Wang, YB
    Li, TX
    Li, AY
    Li, WC
    [J]. ICAI '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 2005, : 189 - 194
  • [6] An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
    Cecilia Bohler
    Rolf Klein
    Chih-Hung Liu
    [J]. Algorithmica, 2019, 81 : 2317 - 2345
  • [7] An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Klein, Rolf
    Liu, Chih-Hung
    [J]. ALGORITHMICA, 2019, 81 (06) : 2317 - 2345
  • [8] Estimating time-dependent higher-order interactions in parallel spike trains
    Shimazaki, Hideaki
    Gruen, Sonja
    [J]. NEUROSCIENCE RESEARCH, 2008, 61 : S140 - S140
  • [9] Efficient Parallel Vectors Feature Extraction from Higher-Order Data
    Pagot, C.
    Osmari, D.
    Sadlo, F.
    Weiskopf, D.
    Ertl, T.
    Comba, J.
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (03) : 751 - 760
  • [10] Estimating the higher-order Randic index
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    Gutman, Ivan
    [J]. CHEMICAL PHYSICS LETTERS, 2010, 489 (1-3) : 118 - 120