Metal-Organic Frameworks for Ion Conduction

被引:29
|
作者
Xue, Wendan [1 ,2 ]
Sewell, Christopher D. [2 ]
Zhou, Qixing [1 ]
Lin, Zhiqun [2 ,3 ]
机构
[1] Nankai Univ, Key Lab Pollut Proc & Environm Criteria, Minist Educ, Tianjin 300071, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
基金
中国国家自然科学基金;
关键词
Metal-Organic Frameworks; Ion Conduction; Proton Conduction; Hydroxide Ion Conduction; Coordination Polymers; HIGH PROTON CONDUCTIVITY; POROUS COORDINATION POLYMERS; INDUCED SINGLE-CRYSTAL; STRUCTURAL TRANSFORMATION; HYDROXIDE CONDUCTIVITY; ACID GROUPS; DEGREES-C; LITHIUM; LIQUID; SUBSTITUTION;
D O I
10.1002/anie.202206512
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state ionic conductors are compelling alternatives to liquid electrolytes in clean energy-harvesting and -storage technologies. The development of novel ionic conducting materials is one of the most critical challenges for next-generation energy technologies. Several advancements in design strategies, synthetic approaches, conducting properties, and underlying mechanisms for ionic conducting metal-organic frameworks (MOFs) have been made over the past five years; however, despite the recent, considerable expansion of related research fields, there remains a lack of systematic overviews. Here, an extensive introduction to ionic conducting performance for MOFs with different design strategies is provided, focusing primarily on ion mobility with the aid of hydrogen-bonding networks or solvated ionic charge. Furthermore, current theories on ion conducting mechanisms in different regimes are comprehensively summarized to provide an understanding of the underlying working principles in complex, realistic systems. Finally, challenges and future research directions at the forefront of ionic conducting MOF technologies are outlined.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Metal-Organic Frameworks for Separations
    Li, Jian-Rong
    Sculley, Julian
    Zhou, Hong-Cai
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 869 - 932
  • [42] Chiral Metal-Organic Frameworks
    Gong, Wei
    Chen, Zhijie
    Dong, Jinqiao
    Liu, Yan
    Cui, Yong
    [J]. CHEMICAL REVIEWS, 2022, 122 (09) : 9078 - 9144
  • [43] Metal-Organic Frameworks for Catalysis
    Bhattacharjee, Samiran
    Lee, Yu-Ri
    Puthiaraj, Pillaiyar
    Cho, Sung-Min
    Ahn, Wha-Seung
    [J]. CATALYSIS SURVEYS FROM ASIA, 2015, 19 (04) : 203 - 222
  • [44] Retrofitting metal-organic frameworks
    Christian Schneider
    David Bodesheim
    Julian Keupp
    Rochus Schmid
    Gregor Kieslich
    [J]. Nature Communications, 10
  • [45] Bimetallic metal-organic frameworks
    Shustova, Natalia
    Dolgopolova, Ekaterina
    Ejegbavwo, Otega
    Rice, Allison
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [46] Metal-organic frameworks for electrocatalysis
    Liao, Pei-Qin
    Shen, Jian-Qiang
    Zhang, Jie-Peng
    [J]. COORDINATION CHEMISTRY REVIEWS, 2018, 373 : 22 - 48
  • [47] The future of metal-organic frameworks
    Champness, Neil R.
    [J]. DALTON TRANSACTIONS, 2011, 40 (40) : 10311 - 10315
  • [48] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [49] Multivariate metal-organic frameworks
    Aasif Helal
    Zain H.Yamani
    Kyle E.Cordova
    Omar M.Yaghi
    [J]. National Science Review, 2017, 4 (03) : 296 - 298
  • [50] Metal-Organic Frameworks as Electrocatalysts
    Peng, Yong
    Sanati, Soheila
    Morsali, Ali
    Garcia, Hermenegildo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)