Some results on P-harmonic maps and exponentially harmonic maps between Finsler manifolds

被引:2
|
作者
Zhu Wei [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Finsler manifolds; stable; P-harmonic maps; exponentially harmonic maps;
D O I
10.1007/s11766-010-2117-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stability of P-harmonic maps and exponentially harmonic maps from Finsler manifolds to Riemannian manifolds by an extrinsic average variational method in the calculus of variations. It generalizes Li's results in [2] and [3].
引用
收藏
页码:236 / 242
页数:7
相关论文
共 50 条
  • [21] Second variation of harmonic maps between Finsler manifolds
    SHEN Yibing ZHANG YanDepartment of Mathematics Zhejiang University Hangzhou China Correspondence should be addressed to Shen Yibing email yibingshenzjueducn
    [J]. Science in China,Ser.A., 2004, Ser.A.2004 (01) - 51
  • [22] Second variation of harmonic maps between Finsler manifolds
    SHEN Yibing & ZHANG YanDepartment of Mathematics
    [J]. Science China Mathematics, 2004, (01) : 39 - 51
  • [23] On regularity theory for n/p-harmonic maps into manifolds
    Da Lio, Francesca
    Schikorra, Armin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 165 : 182 - 197
  • [24] Second variation of harmonic maps between Finsler manifolds
    Shen, YB
    Zhang, Y
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (01): : 39 - 51
  • [25] Second variation of harmonic maps between Finsler manifolds
    Yibing Shen
    Yan Zhang
    [J]. Science in China Series A: Mathematics, 2004, 47
  • [26] Heat flow for p-harmonic maps between Riemannian compact manifolds
    Fardoun, A
    Regbaoui, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (11): : 979 - 984
  • [27] Heat flow for p-harmonic maps between compact Riemannian manifolds
    Fardoun, A
    Regbaoui, R
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) : 1305 - 1320
  • [28] Exponentially harmonic maps between Kähler manifolds
    Chiang, Yuan-Jen
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (03)
  • [29] On equivariant p-harmonic maps
    Fardoun, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01): : 25 - 72
  • [30] On the Generalized of p-Harmonic Maps
    Merdji, Bouchra
    Cherif, Ahmed Mohammed
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 183 - 191