On the continuity of functionals defined on partitions

被引:3
|
作者
Ruf, Matthias [1 ]
机构
[1] Tech Univ Munich, Zentrum Math M7, Boltzmannstr 3, D-85748 Munich, Germany
关键词
Surface energies; continuity; finite partitions;
D O I
10.1515/acv-2016-0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the continuity of prototypical functionals acting on finite Caccioppoli partitions and prove that it is equivalent to convergence of the perimeter of the jump set.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [21] FUNCTIONALS DEFINED BY TRANSFINITE RECURSION
    TERLOUW, J
    JOURNAL OF SYMBOLIC LOGIC, 1981, 46 (02) : 442 - 442
  • [22] Continuity and differentiability of regression M functionals
    Fasano, Maria V.
    Maronna, Ricardo A.
    Sued, Mariela
    Yohai, Victor J.
    BERNOULLI, 2012, 18 (04) : 1284 - 1309
  • [23] MODULUS OF CONTINUITY FOR CONTINUOUS ADDITIVE FUNCTIONALS
    MILLAR, PW
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 24 (01): : 71 - &
  • [24] Path continuity of fractional Dirichlet functionals
    Ren, JG
    Zhang, XC
    BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (04): : 368 - 378
  • [25] CONTINUITY OF SEMI-ADDITIVE FUNCTIONALS
    SMIRNOV, EI
    MATHEMATICAL NOTES, 1976, 19 (3-4) : 329 - 333
  • [26] CONTINUITY AND REPRESENTATION OF ORTHOGONALLY ADDITIVE FUNCTIONALS
    DREWNOWSKI, L
    ORLICA, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (10): : 647 - +
  • [27] SEMI-CONTINUITY OF INTEGRAL FUNCTIONALS
    IOFFE, AD
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (14): : 807 - 809
  • [28] ABSOLUTE CONTINUITY OF POSITIVE LINEAR FUNCTIONALS
    Szucs, Zsolt
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02): : 201 - 247
  • [29] A NOTE ON NON LOWER SEMICONTINUOUS PERIMETER FUNCTIONALS ON PARTITIONS
    Magni, Annibale
    Novaga, Matteo
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (03) : 501 - 508
  • [30] Discrete Integrals and Axiomatically Defined Functionals
    Klement, Erich Peter
    Mesiar, Radko
    AXIOMS, 2012, 1 (01) : 9 - 20